Kaushik, Deepak Kumar and Mukhopadhyay, Rupanjan and Kumawat, Kanhaiya Lal and Gupta, Malvika and Basu, Anirban (2012) Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation. J Neuroinflammation, 9 (57).
|
Text
235_Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation.pdf Download (2123Kb) | Preview |
Abstract
BACKGROUND: Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4), a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4. METHODS: For in vitro studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For in vivo studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions. RESULTS: Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti-inflammatory action of honokiol. CONCLUSIONS: Honokiol potentially reduces inflammation in activated microglia in a Klf4-dependent manner.
Item Type: | Article |
---|---|
Subjects: | Neurodegenerative Disorders Neuro-Oncological Disorders Neurocognitive Processes Neuronal Development and Regeneration Informatics and Imaging Genetics and Molecular Biology |
Depositing User: | Dr. D.D. Lal |
Date Deposited: | 04 May 2017 10:55 |
Last Modified: | 10 Dec 2021 07:36 |
URI: | http://nbrc.sciencecentral.in/id/eprint/60 |
Actions (login required)
View Item |