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Abstract

We propose that preservation of functional integration, estimated from measures of neural
synchrony, is a key neurocompensatory mechanism associated with healthy human ageing.
To support this proposal, we demonstrate how phase-locking at peak alpha frequency from
Magnetoencephalography (MEG) data is invariant over lifespan in a large cohort of human
participants, aged 18-88 years. Using empirically derived connection topologies from diffusion
tensor imaging (DTI) data, we create an in-silico model of whole-brain alpha dynamics. We
show that enhancing inter-areal coupling can cancel the effect of increased axonal transmission
delay associated with age-related degeneration of white matter tracts and thus, preserve neural
synchrony. Together with analytical solutions for non-biological all-to-all connection scenarios,
our model establishes the theoretical principles by which frequency slowing with age, frequently
observed in the alpha band in diverse populations, can be viewed as an epiphenomenon of the
underlying neurocompensatory mechanisms.
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Introduction

Despite remarkable progress in human neurophysiological and neuroimaging research, a compre-
hensive theory of brain aging that connects functional neuromarkers with structural constraints
and their behavioral ramifications remains elusive. A persistent debate in the field of aging neu-
roscience centers around the question of whether functional neuromarkers of aging indicate a
gradual decay of brain architecture or the presence of compensatory reorganization mechanisms
that counteract the deleterious effects of structural loss Park and Reuter-Lorenz [2009], Reuter-
Lorenz and Park [2014]. According to the latter view, the brain, being a dynamic and adaptive
system can preserve biologically crucial parameters in the face of continual structural decline
with age Park and Reuter-Lorenz [2009]. Working point of the system can be homeostatically
regulated through plasticity mechanisms that endow the brain with a vast set of dynamical
configurations. Loss of one structural component can be compensated for, by an appropriate
reconfiguration of system parameters Marder and Goaillard [2006], Turrigiano [1999], Gray and
Barnes [2015]. However, the task of classifying specific age-related changes as either adverse or
compensatory is complicated by the enormous complexity of brain dynamics Gray and Barnes
[2015], Naik et al. [2017].

A case in point is the slowing down of peak alpha frequency (PAF) Babiloni et al. [2006a],
Sahoo et al. [2020], a well-documented change in ongoing electro/magneto-encephalographic
(EEG/MEG) signals with age. Studies have identified white-matter as a potential locus for
resting-state alpha disruption Hindriks et al. [2015], Bells et al. [2017], Minami et al. [2020],
Nunez and Srinivasan [2014]. Brain-wide alpha activity is coordinated by and propagates along
white-matter fibers Hindriks et al. [2015], Nunez and Srinivasan [2014] that connect spatially
distant brain regions. White matter fibres consist of myelinated axons which undergo multiple
cycles of repair throughout normal ageing. However, axonal conduction speeds are only par-
tially restored by remyelination, as remyelinated axons possess shorter internodes as compared
to developmentally myelinated axons Peters [2009], Scurfield and Latimer [2018]. Reduced
conduction speeds along white-matter tracts predict slower network frequencies and impaired
synchronization in network models of large-scale brain dynamics Niebur et al. [1991], Pajevic
et al. [2014], Petkoski et al. [2018]. Left unchecked, progressive reduction in conduction velocity
with age may lead to a complete breakdown of synchrony in crucial brain circuits that subserve
normal cognitive processes Nunez and Srinivasan [2014], Sadaghiani et al. [2012]. Hence, from
a systems-level view there must exist compensatory mechanisms that arrest functional degen-
eration.

This article hypothesizes that neural architecture can prevent functional degradation with
age by reconfiguring itself in response to the age-related increase in axonal transmission delays.
To validate this hypothesis, we estimated a set of measures of neural synchrony— Phase Lock-
ing Value (PLV) and Phase Lagged Index (PLI)— in resting-state MEG data obtained from
participants aged 18-88 at the Cambridge Centre for Ageing and Neuroscience(Cam-CAN)
Shafto et al. [2014]. These measures have been identified as key metrics that define functional
integration in brain networks by several researchers Lachaux et al. [1999], Aydore et al. [2013],
Cohen [2014]. We find that phase locking (using both PLV and PLI) remains preserved at
the IPAF which slows down with age, thus favoring a compensatory role of functional integra-
tion during ageing process. Seeking mechanistic insights into this process, we investigate the
relationship between IPAF and phase-locking by constructing an in-silico whole-brain model
(WBM) of neural coordination. The WBM consisted of coupled differential equations, modeling
the phase of autonomous alpha oscillators (Kuramoto model Kuramoto [2003]) at nodes chosen
from standardized anatomical parcellations of the human brain Cabral et al. [2011]. White
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matter properties obtained from diffusion tensor imaging (DTI) data, namely- inter-areal con-
nection strength and transmission delays were varied to study the relationship of steady-state
phase-locking and network frequency in the alpha band. The complex network obtained from
DTI derived topology and a simplified all-to-all network tractable by mathematical analysis
showcased the emergence of a complex interplay between transmission delays and neural cou-
pling as key detyerminants of phase locking and network frequency. Numerically, we explored
the regimes of maximal metstability Deco and Kringelbach [2016], Naik et al. [2017], and show
how such parameter regimes support the preservation of functional connectivity across lifespan.
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Results

Alpha phase locking is preserved at the IPAF across age

MEG recordings from the Cam-CAN lifespan cohort (age range 18-88 years) was used to un-
derstand the relationship of network frequency and functional connectivity via phase locking
measures across age. Source localization was performed on resting-state MEG data from ran-
domly chosen 200 participants in the entire age range from the original sample size of 650
human participants using sLORETA Pascual-Marqui [2002] as implemented by MNE-Python
toolbox Gramfort et al. [2014]. After computing the source time series at predefined anatomical
parcellations (Desikan et al. [2006]), 1

f
fluctuations were removed using an automated algorithm

Donoghue et al. [2020] for identification of individual peak alpha frequency in each participant
(IPAF). This was deemed necessary because 1/f features in EEG have been shown to vary with
age Voytek et al. [2015]. Out of 200, 160 participants possessing a distinct alpha peak in at
least 30 ROIs(out of 68) were included in the final analysis. For these participants, mean peak
alpha frequency (average peak alpha across ROIs) was found to significantly reduce with age
(r = −0.4, p < 0.0001) (Figure 2), similar to patterns reported in earlier studies Sahoo et al.
[2020].

Next, for each participant we computed the Phase locking value (PLV) at the IPAF with
a bandwidth of 4Hz between all ROI pairs. PLVs were averaged across all possible pairs to
obtain one PLV for each participant. For comparison, we also estimated PLV at two other
frequency bands - lower alpha (LA,6-10Hz) and upper alpha (UA, 10-14Hz). An additional
measure of phase locking — Phase Locking Index (PLI), was estimated to rule out the effect
of volume conduction manifesting as zero-lag phase synchronization (Figure 1). Correlation
analysis between age and band-specific phase locking revealed that both PLV and PLI increased
with age in LA band (rPLV = 0.21, pPLV < 0.001, rPLI = 0.29, pPLI < 0.001); PLV and PLI
decreased with age in the UA band(rPLV = −0.38, pPLV < 0.0001, rPLI = −0.3, pPLI < 0.001).
In contrast, PLV and PLI remained invariant with age at the IPAF centered band (rPLV =
−0.1, pPLV = 0.16, rPLI = 0.09, pPLI = 0.29) (Figure 2). Surrogate distributions, obtained by
randomly shuffling resting state epochs indicated that PLI values in the IPAF centered band
were significantly higher than what would be expected by chance (p < 0.01) (Figure 2). Taken
together, the results indicate that phase locking is preserved at the IPAF, which slows with
age(Figure 2). Findings were also replicated at the sensor level (N= 650, see Supplementary
material).

Conduction delays and coupling modulate network frequency and
synchrony in an idealized neural network with all-to-all connections

We motivate a theoretical understanding of how oscillatory frequency and network synchro-
nization are modulated via connection properties by considering a network of N, Kuramoto
phase-oscillators Kuramoto [2003]. Oscillators interact with one another according to the fol-
lowing equation-

θ̇i = ωi +
K

N

N∑
j=1

sin(θj(t− τ)− θi) + dζ(t) (1)

where, θ and ω are the phase and natural frequency of each oscillator. K and τ specify
average coupling strength and transmission delay between any two nodes respectively. Natural
frequencies are derived from a symmetrical distribution centered at µ. In the most general case,
the system is supplied with zero mean Gaussian noise process ζ(t), with a standard deviation
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d. The network is composed of N oscillators connected according to an all-to-all topology. The
order parameter (r) indexes the degree of phase-synchronization in the network

z = r(t)eiφ(t) =
1

N

N∑
i

eiθi(t) (2)

such that r(t) = | 1
N

∑N
i e

iθi(t)|, with r = 0 corresponding to incoherence and r = 1 to complete
synchronization and z is a complex valued function tracking the global phase synchronization
in the network. For smaller coupling values, the incoherent state is stable. The incoherent
state loses stability at a critical value of coupling(Kc), giving rise to a partially synchronized
regime. In the absence of conduction delays (τ = 0), the network of oscillators synchronize
at the center frequency (µ = 10Hz) for K > Kc. However, for τ 6= 0, the synchronization
frequency(Ω) is different from the center frequency of the distribution of natural frequencies
(µ)(Figure 3) Niebur et al. [1991]. Specifically, we observe Ω < µ for the all-to-all coupled
network considered here.

For non-zero delays, the network exhibits multistable states, such that the system can reside
in multiple synchronized regimes (see analytical solution below), each associated with a different
synchronization frequency Niebur et al. [1991], Yeung and Strogatz [1999]. Heatmap in Figure
3c, shows the relationship of steady state collective frequency of the network (colour) for dif-
ferent (K, τ). For smaller values of conduction delays, the incoherent network has an average
frequency close to the mean of the distribution of natural frequencies (µ = 10Hz). However,
for longer delays, the collective synchronization frequency shows significant suppression.

The order parameter can be shown to evolve via a low-dimensional system of global synchro-
nization manifold under a set of simplifying assumptions Ott and Antonsen [2008]. Expressions
for steady state synchronization frequency and order parameter were obtained from the low di-
mensional system (see Analytical solution) and compared with parameter space obtained from
numerical simulations 1.

Analytical Solution relating synchronization frequency and conduction delays for
a reduced system

We derive analytical expressions for the synchronization frequency (Ω) and steady state order
parameter (r) for the case of a fully recurrent network of phase oscillators (N →∞), connected
to each other via coupling K subject to delay τ . For simplicity, we consider the noiseless case
(d = 0). The natural frequencies of oscillators ωj are derived from a Lorentzian distribution
given by

g(ω) =
γ

π((ω − µ)2 + γ2)
(3)

Ott and AntonsenOtt and Antonsen [2008] showed that the macroscopic dynamics corre-
sponding to equation 1 follows a low dimensional ODE given by-

ż = (iµ− γ)z − K

2
(z2zt−τ − zt−τ ) (4)

For details of this step please refer to the Supplementary Material or Ott and Antonsen
[2008]. We demand steady-state solutions of the form Ott and Antonsen [2008]

z = r0e
iΩt (5)
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where r0 and Ω are the steady state order parameter and synchronization frequency respectively.
Equations 4 and 5 lead to

ż = r0iΩe
iΩt = (iµ− γ)r0e

iΩt − K

2
[r2

0e
i2Ωtr0e

−iΩ(t−τ) − r0e
iΩ(t−τ)] (6)

r0 = 0 (incoherent solution) is a trivial solution of equation 6 for all K, τ, γ. In order to explore
coherent solutions we equate the real and imaginary parts on both sides leading to the following
transcendental equations

Ω = µ−K sin Ωτ + γ tan Ωτ (7)

r2
0 = 1− 2γ

K cos Ωτ
(8)

The requirement 0 ≤ r2
0 ≤ 1 yields the following condition for the existence of coherent solutions

cos Ωτ ≥ 2γ

K
(9)

Equation 7 and 8 suggest a mechanism through which frequency and order parameter
are modulated as a function of coupling and delay for given γ and µ. The transcendental
equation 7 can be approximately solved by performing Taylor series expansions, sin Ωτ →
Ωτ − (Ωτ)3

3!
, cos Ωτ → 1 − (Ωτ)2

2
, tan Ωτ → Ωτ + (Ωτ)3

3
. Considering the first two terms of the

Taylor series the transcendental equation 7 can be simplified to

(2γ +K)Ω3τ 3 + (6γτ − 6Kτ − 6)Ω + 6µ = 0 (10)

and the constraint in 9 can be further approximated to

Ω2τ 2 ≤ 2− 4γ

K
(11)

Subsequently, equation 10 is solved numerically by using the MATLAB routine fsolve for the
parameter space constrained by the condition 11. The solution shows excellent agreement with
numerical solutions with N = 1000, as shown in Figure 3. Most importantly for our study, we
find that reductions in network synchrony due to increased conduction delays can be offset by
concomitant changes in coupling.

Reduced network synchrony due to lowered conduction speeds can
be rescued by global scaling of connection strength

In-silico modelling of brain dynamics was used to study whether alpha dynamics on white-
matter network topology retains the key features exhibited by idealized networks for which
analytical relationships between network frequency and neuronal coupling are derived in the
previous section. Kuramoto phase-oscillators Kuramoto [2003] are placed at anatomical land-
marks using the Desikan-Killiany atlas Desikan et al. [2006]. For specifying white-matter con-
nectivity, we used DTI adjacency matrices from a separate dataset of healthy subjects, as
described in Abeysuriya et al. [2018]. Conduction delays between all node pairs were estimated

by scaling inter-node Euclidean distances by a fixed cortical conduction velocity v, τij =
Dij

v
.

The biological scenario differs from the idealized network in three key aspects- 1. Topology,
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2. Distribution of natural frequencies and 3. Introduction of distance dependent delays. Os-
cillators are set up to interact with one another according to the following equation Kuramoto
[2003]

θ̇i = ωi +
K

N

N∑
j=1

cij sin(θj(t− τij)− θi) + dζ(t) (12)

where, the term cij introduces heterogeneous connection weights derived from normalized
measures of fibre densities. Similar to the idealized case, network frequency and phase locking
values were obtained by varying cortical conduction velocity(v) and global scaling parame-
ter(K). Cortical conduction velocity was varied in the range of 1−30m/s, in line with previous
experimental reports Swadlow [1982]. Altering the conduction velocity changes the distribution
of distance dependent transmission delays, whereas changing K is analogous to synaptic scaling.
Following Gollo et al. [2017], Roberts et al. [2019], natural frequencies (ωi’s) are distributed
across ROIs based on node strength (ωmax = 12Hz, ωmin = 8Hz, µ = 11.06Hz) (Figure 4,b,
see Methods for selection of natural frequencies).

Similar to observations in idealized network topology with all-to-all connections, network
synchrony is modulated by the combined influence of conduction velocity and global gain pa-
rameter (K). Broadly, the system exhibits lower levels of synchrony for very weak coupling and
low conduction velocity (Figure 4). On the other hand, larger coupling and conduction ve-
locity lead to hyper-synchronous states. Somewhere in between lies the partially synchronized
state, characterized by high temporal variability in the Kuramoto order parameter. Such maxi-
mally metastable regimes are thought to underlie resting state dynamics Deco and Kringelbach
[2016], Naskar et al. [2021]. Accordingly, we restrict our attention to the metastable regime
while considering age-related reduction in conduction velocity. Distribution of metastability
values clearly delineates the metastable regime as a distinct mode (Figure 4,e).

To better visualize the relationship of network frequency and phase locking, we plot contour
lines. Compensatory balancing of phase locking corresponds to a traversal along the PLV con-
tour lines (Figure 4,c). We observe a robust reduction in mean network frequency along PLV
contour lines in the metastable regime (Figure 4,c,d). In contrast, a vertical descent along
the y-axis in Figure 4,a, that can be interpreted as a passive decline in conduction velocity
without compensation, is not accompanied by any significant reduction in network frequency.
This can be gauged by the vertical orientation of frequency contours in the metastable regime.

Interestingly, moving along the PLV contour lines not only preserves network synchrony,
but also metastability (red region, Figure 4d). Therefore, in addition to preserving mean
synchrony levels, synaptic scaling also maintains the temporal richness of alpha dynamics that
subserves the dynamic repetoire of core brain areas Deco et al. [2017]. A non-compensatory
decline in network conduction velocity also raises the possibility of a sudden increase in net-
work frequency owing to a complete breakdown of network synchrony due to high network
delays. However, traversing along PLV contour lines assures a monotonic reduction of net-
work frequency, while maintaining synchronicity among brain areas. Model simulations with
different noise amplitudes and distributions of natural frequency led to qualitatively similar
results(Supplementary). To demonstrate the generality of our results, we replicated the
analysis using a different connectomic dataset and parcellation scheme(automated anatomical
labeling,AAL) as described in Cabral et al. [2014](Supplementary).
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Discussion

In this study we propose that functional integration achieved via neural synchrony is a dom-
inant neurocompensatory mechanism that is underway during healthy lifespan ageing. The
key entry point that led us towards this understanding is a widely reported phenomenon –
age-related decrease in individual peak alpha frequency (IPAF) Babiloni et al. [2006a], Voytek
et al. [2015], Scally et al. [2018], Sahoo et al. [2020] which we demonstrate to be the outcome
of a dynamic functional compensation process that preserves network synchrony in response
to inclement enhancement transmission delays in information propagation stemming from de-
myelination of axonal tracts as function of age. We test our hypothesis on empirical MEG
recordings by estimating measures of network synchrony at the IPAF in both source (Figure
2) and sensor levels (Supplementary Material). We validate this hypothesis by employing two
complementary measures of phase synchrony- phase locking value (PLV) and phase lag index
(PLI) on source-localized MEG data made publicly available by Cam-CAN. While PLV es-
timates consistency of phase differences, PLI additionally controls for volume conduction by
discounting zero-lags Stam et al. [2007]. Through surrogate testing we confirm that PLI values
indicate significant phase relationships and are not artifacts of sample size bias Stam et al.
[2007]. Our experimental results corroborate the findings of preserved IPAF connectivity ob-
servations by Scally and colleagues which were published for a smaller sample size on EEG
sensor level data Scally et al. [2018]. Here we also demonstrate the preservation of network
synchrony at IPAF in both source and sensor level data, thus confirming and expanding the
scope of previous findings Scally et al. [2018]. To further elucidate the mechanistic basis of
neurocompensatory mechanisms, we employ computational modeling to gain insights into the
dynamic origins of age-associated IPAF slowing. Numerous studies have speculated a promi-
nent role for white-matter fibers in modulating alpha synchrony Bells et al. [2017], Hindriks
et al. [2015], Minami et al. [2020]. Therefore, in order to study the relationship of network
frequency and synchrony, we reduce large-scale white-matter network to its basic dynamical
elements– conduction delays and inter-areal coupling that forms the backbone of a whole brain
connectome. Each node in the connectome is considered to be a unit amplitude limit-cycle os-
cillator (an idealized autonomous oscillator), described by its phase (Figure 3). Anatomically,
each autonomous alpha oscillator can be identified with a self-sustained thalamo-cortical unit,
or alternatively, pacemaker populations such as the infragranular and supragranular layer in V2
and V4 Victor et al. [2011], Bollimunta et al. [2008]. Both numerical and analytical approaches
on idealized network with all-to-all connections confirm how changes in average conduction
delays may be offset by modifications in coupling, and that frequency slowing is a collateral
to this compensation. Next, we extend our model to include network topology estimated from
empirical human white-matter connectivity and find robust frequency modulation with average
conduction speed change and global coupling. We track trajectories in the global coupling-
conduction velocity space that preserve phase locking, restricting our attention to the partially
synchronized regime. Our results unequivocally demostrates frequency slowing emerges as the
system attempts to maintain phase locking in response to a reduction in conduction velocity
by modulation of inter-areal connectivity (Figure 4).

As early as the 1950s, Norbert Wiener had hypothesized that independent oscillators with
natural frequencies close to 10 Hz interact with one another to shape alpha rhythmicity Wiener
[1966], Strogatz [1994]. According to Wiener, alpha activity emerges from frequency pulling be-
tween individual alpha oscillators which possess slightly different natural frequencies, such that
the system of oscillators “constitute a more accurate oscillator en masse than they do singly”
Wiener [1966]. This idea is regarded as one of the earliest models of collective dynamics of bio-
logical oscillators Strogatz [1994]. In the intervening years, models of collective synchronization
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have become a mainstay of neuroscience, having been employed to explain diverse phenomenon
such as travelling brain waves, fluctuating beta oscillations, fMRI functional connectivity, large
scale brain synchronization, myelin plasticity etc. Cabral et al. [2011], Zhang et al. [2018],
Breakspear et al. [2010], Petkoski et al. [2018], Noori et al. [2020]. In the present article, we
adapt Wiener’s idea of frequency pulling to explain the gradual slowing of alpha frequency with
age. Specifically, we show that frequency pulling in the presence of conduction delays, biases
the system to synchronize at lower frequencies. Intuitively, the mechanism proposed here is
analogous to a group dance, where complicated dance moves are initially practiced slowly, since
it is easier to maintain lockstep at lower speeds. Similarly, upscaling inter-areal coupling and
inadvertently global synaptic scaling allows for the maintenance of network lockstep at slower
coordination frequencies.

Similar homeostatic mechanisms that regulate circuit output have been identified elsewhere.
For example, neurons in the visual cortex of developing rodents undergo synaptic scaling in
response to visual inputs Desai et al. [2002]. Synaptic scaling has also been shown to com-
pensate for neuron number variability in the crustacean stomatogastric ganglion Daur et al.
[2012]. Recently, Santin and colleagues elegantly demonstrate how respiratory motor neurons
in the bullfrog can dynamically regulate breathing by modifying synaptic strengths after long
periods of inactivity Santin et al. [2017]. From the perspective of communication through
coherence (CTC) hypothesis Fries [2015], alpha phase-locking constitutes an information chan-
nel, whereby distant oscillators with slightly different peak frequencies communicate with one
another through leader-laggard phase relations. Consistent phase locking, a prerequisite for
effective communication across brain regions, entails that oscillators adjust their individual
frequencies under the combined influence of coupling and transmission delays. Thus, there
emerges a clear relationship between oscillation frequency and phase connectivity. Therefore,
our central hypothesis is that frequency shifts with aging need to be understood in the context
of homeostatic maintenance of large-scale phase locking. Understanding the precise mechanism
of frequency slowing – whether adverse or compensatory – has far-reaching consequences for
characterizing age-associated neuropathologies like Dementia and Alzheimer’s disease, which
share PAF slowing as a prominent featureLópez-Sanz et al. [2016], Sharma and Nadkarni [2020],
Babiloni et al. [2006b]. In the framework proposed here, greater frequency slowing in AD may
result from the higher demands placed on compensatory processes by accelerated demyelina-
tion. Therefore, our model supports a growing view that suggests a greater role for white-matter
abnormality in explaining AD progression Sachdev et al. [2013].

Compensatory models of aging have been proposed to account for the finding that many
individuals continue to function remarkably well with age despite significant structural loss. For
example, according to the scaffolding theory of aging and cognition(STAC) Park and Reuter-
Lorenz [2009], the aging brain can preserve cognitive function in the face of age-associated neural
changes like volume shrinkage, white-matter degeneration, cortical thinning, and dopamine
depletion by recruiting alternate neural pathways, referred as scaffolds. While the STAC model
has succeeded in explaining a number of observations in aging neuroscience at the cognitive
level, we still lack a clear understanding of the dynamical principles that facilitate compensation
or in other words a physical quantity that remains invariant. Thus, our key empirical finding
that preservation of phase locking at PAF gives a novel insight to compensatory processes
that are involved by the candidate brain networks. Thus, our model departs from the standard
conceptualization of alpha slowing as an adverse outcome of aging. Rather, we recast frequency
slowing as a tell-tale signature of neural compensation. Earlier models have conceptualized
alpha slowing as a passive process, resulting from the gradual decline of system parameters.
For example, Lopes da Silva and colleagues Da Silva et al. [1974] model EEG maturation by
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using a neural mean field model. Their model consists of two populations of neurons: thalamic
and cortical, driven by multiple uncorrelated noise sources. By changing the feedback coupling
parameters the authors obtained a family of spectral curves that closely resemble developmental
trajectories. However, the model lacks axonal delays, which are known to undergo age-related
changes and are held to be major drivers for the evolution of cortical networks. Similarly,
Van Albada and colleagues Van Albada et al. [2010] employ a more detailed neural mean
field model of the thalamo-cortical system Robinson et al. [2001] to investigate age-associated
changes in EEG spectral parameters and found white-matter stabilization and regression to be
a major determinant of EEG characteristics across life-span. However, the approach, models
the gross EEG spectrum for estimating model parameters, making it hard to dissociate specific
mechanisms responsible for age-related changes in narrow-band frequencies. More recently,
Bhattacharya et. al. Bhattacharya et al. [2011], used a variant of the Lopes Da Silva model
to study slowing of peak alpha oscillations in the context of Alzheimer’s disease, implicating
thalamic inhibition as the principal driver of alpha slowing, however, as with the original Lopes
Da Silva model, this model does not consider axonal conduction delays. Future efforts can build
on the model proposed here to tease out how compensatory processes operate in various other
contexts, such as rehabilitation from stroke, recovery from traumatic brain injuries to predict
recovery timelines and to detect critical times for intervention.
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Methods

MEG analysis

Data description

Data used in the preparation of this work was obtained from the CamCAN repository (available
at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) Shafto et al. [2014]. Cam-CAN dataset
was collected in compliance with the Helsinki Declaration, and has been approved by the local
ethics committee, Cambridgeshire 2 Research Ethics Committee (reference:10/H0308/50). For
all the subjects, MEG data were collected using a 306-sensor (102 magnetometers and 204
orthogonal planar magnetometers) VectorView MEG System by Elekta Neuromag, Helsinki,
located at MRC-CBSU. Data were digitized at 1 kHz with a high pass filter of cutoff 0.03 Hz.
Head position was monitored continuously using four Head Position Indicator coils. Horizontal
and vertical electrooculogram were recorded using two pairs of bipolar electrodes. One pair
of bipolar electrodes were used to record electrocardiogram for pulse-related artifact removal
during offline analysis. The data presented here consisted only of resting state, where the
subjects sat still with their eyes closed for a minimum duration of 8 min and 40s.

Data selection and Source Reconstruction

200 subjects from the original data were randomly selected for further source reconstruction
analysis. To ensure homogeneous sampling, we sampled 50 participants from each of the fol-
lowing age-groups— Young(18-34 yrs), Middle Elderly(35-49 yrs), Middle late(50-64)yrs and
Old(65-88 yrs). Random selections were repeated until a relatively equal split between genders
was obtained across each age-group. Pre-processed MEG data of selected participants was
referenced to a standard template(Collins27) Holmes et al. [1998]. MRI segmentation was per-
formed using freesurfer. Boundary element method was used to compute surface triangulation
for forward computation Fischl [2012]. Standard low resolution brain electromagnetic tomog-
raphy(sLORETA), implemented in MNE-python was employed for source estimation Gramfort
et al. [2014]. Source time-series were projected to 68 brain parcellations according to the
Desikan-Killiany atlas Desikan et al. [2006].

IPAF estimation

Time series from each participant were epoched in 5s bins and downsampled to 90 Hz. The
influence of EOG and ECG on sensor data was removed for every subject through an automated
ICA algorithm Sahoo et al. [2020]. All subsequent analysis was performed on the resulting data.
ROI-wise power spectral density was estimated using Welch periodogram method. Spectrum
was estimated for each epoch after multiplying time series with a Hanning window. Subject
spectrum was obtained by averaging across epochs. Power spectrum of electrophysiological
recordings consist of both periodic and aperiodic components Voytek et al. [2015], Thuwal
et al. [2021]. In order to remove the influence of aperiodic 1

f
component, the spectrum(P) is

modelled as -

P = L+
M∑
m=0

Gm (13)

L,Gm model the aperiodic and periodic components respectively. Gm is approximated a a
Gaussian function-

Gm = ae
−(F−c)2

2w2 (14)
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while the aperiodic component(L) is modeled in the semi-log power space as-

L = b− log(F χ) (15)

where, b is an offset and χ is the slope. a, c, w, b and χ were estimated through an automated
model fitting procedure as described in Donoghue et al. [2020]. Model fitting was performed
in the 2-20 Hz range, following Tran et al. [2020]. We excluded participants who had distinct
peaks in fewer than 30 ROIs in the alpha band(6-14Hz).

PLV and PLI

Phase locking was estimated by using PLV and PLI measure. Firstly, each 5s epoch for each
participant was bandpass filtered in LA, UA and SSA band. Next, Hilbert transform was
performed for each filtered epoch to extract phase time series, φa(t). Phase difference (φab(t) =
φa(t) − φb(t)) was calculated for each ROI pair. PLV and PLI were estimated as Stam et al.
[2007]-

PLVab =
1

T
|
T∑
t=1

e(i∆φab(t))| (16)

PLIab =
1

T
|
T∑
t=1

sign(∆φab(t))| (17)

sign =


+1 ∆φab > 0

0 ∆φab = 0

−1 ∆φab < 0

(18)

PLV and PLI were averaged across epochs and ROI pairs.

Permutation Testing

Pearson’s linear correlation was computed to calculate age-trends for IPAF, PLV and PLI.
Surrogate distributions were generated by randomly shuffling variables across 10,000 iterations.
Additionally, bootstrapping was performed to ascertain significant PLI in the SSA band. Sur-
rogate distribution for PLI was obtained by randomly shuffling epochs to produce 100 PLI
values; p-values were estimated from the resulting distribution.

Whole-brain model of alpha slowing

In this study we use the Kuramoto model 1 with conduction delays in order to explain brain-
wide slowing of alpha oscillations with age. We demonstrate frequency slowing on two types of
topology- 1) Fully recurrent, 2) DTI based structural connectivity.

Structural connectivity(DTI)

For our study we use structural connectivity(SC) matrix derived from Human Connectome
Project as provided in Abeysuriya et al. [2018]. SC matrices were obtained by performing
probabilistic tractography on diffusion MRI data. In short, fibre orientations were calculated
from distortion-corrected data, as implemented in FSL. Probtrackx2 was used to detect upto 3
fibre orientations per white-matter voxel. Matrices were reduced to a 68 * 68 scheme, according
to the Desikan-Killainy atlas(Desikan et al. [2006]). Adjacency matrices of 40 participants were
averaged. Log-transformation was performed to account for algorithmic biases. Conduction
delays were obtained by scaling barycentric distances between ROIs by conduction velocity.
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Natural frequency assignment

Natural frequencies for 68 ROIs were assigned based on anatomical node strengths according
to the equation Gollo et al. [2017], Roberts et al. [2019]-

ωi = ωmax − (ωmax − ωmin)
(sj − smin)2

(smax − smin)2
(19)

Where, ωmax = 12Hz and ωmin = 8Hz are the maximum and minimum oscillatory fre-
quencies, specifying the distribution of alpha frequency across ROIs. smax and smin are the
maximum and minimum strengths respectively.

Metastability

Metastability refers to the ability of dynamical systems to flexibly engage and disengage with-
out remaining confined in trivial dynamical configurations such as hyper synchrony or inco-
herence. According to the communication through coherence(CTC) view, brain areas commu-
nicate through state dependent phase coupling Deco and Kringelbach [2016]. In this scheme,
resting state dynamics must display maximal variability in phase configurations(i.e maximal
metastability). The principle of maximal metastability, combined with realistic values of corti-
cal conduction speeds allow us to demarcate relevant regions for exploration in the conduction
speed-coupling space. The standard deviation of the order parameter 2 is regarded as a proxy
for metastability Deco and Kringelbach [2016].

Numerical Integration

For the recurrent network, system of equations represented by 1 was numerically solved for
N = 1000 oscillators using the Euler method. Integration time step was kept at dt = 0.001s.
For DTI connectivity conduction delays were assumed to be integer multiples of dt to avoid
use of computationally intensive interpolation schemes. Noise was supplied to each node by
multiplying random normal numbers by the noise amplitude, scaled by

√
dt. Each simulation

was run for 30s and first 10s were discarded and all subsequent analysis was performed with the
resulting signal. Neuroscience gateway platform was used to simulate computationally intensive
parameter sweeps Sivagnanam et al. [2013].
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Figure Legends

Figure 1.

Pipeline for estimation of phase locking via PLV and PLI a) Source localized MEG
signals are bandpass filtered to extract signals in specific frequency bands. Hilbert transform is
used to extract instantaneous phase time series. Phases at each timepoint are projected onto
a unit circle. b) Mathematical expressions for the estimation of PLV and PLI. PLV measures
zero-phase lags whereas PLI discounts zero phase lags. This property makes PLI resilient to
volume conduction/field spread artifacts that manifest as zero-phase lag correlations.

Figure 2.

Phase locking in the alpha band a) Overview of analysis pipeline: rsMEG sensor space data
was source localized(sLORETA) and projected to a standard parcellation(Desikan-Killainy).
PSD for each ROI was extracted using welch method and modeled as a linear superposition of
periodic and aperiodic components. Peak frequency was extracted for each brain region and
averaged across ROIs to obtain a single mean peak alpha frequency for each subject. Mean
peak alpha frequency was found to be negatively correlated with age. Subsequently, phase
locking was estimated for each subject using both PLV and PLI. b) Phase locking value (PLV)
and Phase locking index(PLI) estimated for three frequency bands- LA(6-10Hz), IPAF(IPAF-
2–IPAF+2) and UA(10-14Hz). c) PLI values for LA, IPAF and UA band. d) Schematic: PLV,
PLI analysis suggests frequency re-organization that preserves alpha phase locking at reduced
peak frequencies.

Figure 3.

Phase dynamics in an idealized network a) Fully recurrent network of phase oscillators
is considered. b) Natural frequencies of oscillators are drawn from a Lorentzian distribution
with, γ = 1Hz, µ = 10Hz. c) Steady state synchronization frequency and order parameter for
N = 1000 oscillators (d = 0), obtained by numerical simulations. Delays were varied between
0−20ms. d) Analytical expressions for synchronization frequency and order parameter derived
by reducing the high dimensional system through the Ott-Antonsen method. Network frequency
and order parameter are modulated by coupling and delay.

Figure 4.

Large scale alpha phase locking a) Model overview-(Above) DTI connectivity and distri-
bution of inter-node distances. (Below)Equations governing node dynamics. b) Distribution
of natural frequencies. (Above)Green spheres represent magnitude of natural frequency. (Be-
low) ROI wise distribution of natural frequencies. c) Contour plot indicating isolines for mean
frequency(blue) and PLV(red) as a function of global coupling and conduction velocity, Noise
amplitude(d) = 3 , ωmax = 12Hz, ωmin = 8Hz. PLV and PAF remain constant along iso-
lines. d) Metastability measured as the standard deviation of the order parameter plotted as
a function of conduction velocity and global coupling. Dotted line indicates PLV isoline. e)
Distribution of metastability distribution. Red region in heatmap corresponds to second mode
of the gaussian. f) Distribution of conduction delays(in ms), for conduction velocity=5,10,15.20
m/s g) Frequency depression along isolines corresponding to PLV = 0.2, 0.3 and 0.4.
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