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Understanding How the Brain Changes Its Mind:
Microstimulation in the Macaque Frontal Eye Field Reveals
How Saccade Plans Are Changed
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Accumulator models that integrate incoming sensory information into motor plans provide a robust framework to understand decision making.
However, their applicability to situations that demand a change of plan raises an interesting problem for the brain. This is because interruption
of the current motor plan must occur by a competing motor plan, which is necessarily weaker in strength. To understand how changes of mind
get expressed in behavior, we used a version of the double-step task called the redirect task, in which monkeys were trained to modify a saccade
plan. We microstimulated the frontal eye fields during redirect behavior and systematically measured the deviation of the evoked saccade from
the response field to causally track the changing saccade plan. Further, to identify the underlying mechanisms, eight different computational
models of redirect behavior were assessed. It was observed that the model that included an independent, spatially specific inhibitory process, in
addition to the two accumulators representing the preparatory processes of initial and final motor plans, best predicted the performance and the
pattern of saccade deviation profile in the task. Such an inhibitory process suppressed the preparation of the initial motor plan, allowing the final
motorplantoproceedunhindered.Thus,changesofmindareconsistentwiththenotionofaspatiallyspecific, inhibitoryprocessthatinhibitsthe
current inappropriate plan, allowing expression of the new plan.

Introduction
It is well known that the time taken to respond to the detection of
a stimulus is typically much larger than the sum of sensory affer-
ent and motor efferent delays. This implies that a significant
component of the reaction time (RT) is taken up by a central
decision-making stage that entails an aspect of deliberation. For-
mally, such deliberation can be implemented as an accumulation
or integration of sensory information into a decision variable that
accumulates evidence over time until it satisfies some criterion
value, following which a response is made. Such accumulator
models provide a good explanation of performance in choice and
RT tasks, suggesting that both types of behavior engender com-
mon neural elements (Carpenter and Williams, 1995; Ratcliff and
Rouder, 1998; Ratcliff et al., 1999). The neural correlates of such
accumulation have also been identified in single neurons within
sensorimotor areas in awake behaving monkeys performing de-

cision and RT tasks (Horwitz and Newsome, 1999; Kim and
Shadlen, 1999; Gold and Shadlen, 2001; Krauzlis and Dill, 2002;
Roitman and Shadlen, 2002). Furthermore, it has been shown
that by applying microstimulation to a sensorimotor area, such as
the frontal eye field (FEF), during a decision-making task, one
can track an evolving decision, which is reflected in the oculomo-
tor circuit as a developing motor plan (Gold and Shadlen, 2000).

While accumulator models provide a good framework to
study how decisions and motor plans develop, their applicability
to situations that demand a change in plan is not clear. This poses
an interesting problem for the brain since interruption of the
current motor program must occur by a competing one that
begins later and is therefore weaker in strength according to ac-
cumulator models of response preparation. To understand how
the weaker motor program can supersede the stronger one, al-
lowing for successful changes of mind, we used a redirect task. In
this task, a second stimulus that appeared on infrequent trials
required monkeys to withhold the saccade to the first stimulus
and instead make a saccade to the second one (Ray et al., 2004;
Ramakrishnan et al., 2010). Following up on earlier work (Gold
and Shadlen, 2000), we stimulated the FEF during redirect behav-
ior to track the time course of the changing saccade plan and
examined the underlying computational mechanisms that entail
a change of plan.

Materials and Methods
Subjects
The subjects in these experiments were two monkeys, Monkey C
(Macaca mulatta; female, age � 5 years; weight � 5.5 kg) and Monkey D
(Macaca radiata; male, age � 6 years; weight � 5.2 kg), who were cared
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for in compliance with the Committee for the Purpose of Control and
Supervision of Experiments of Animals, Government of India.

Behavioral paradigm
Monkeys were trained on the redirect task (Ray et al., 2004; Ramakrish-
nan et al., 2010), which is a modified version of the classic double-step
task (Westheimer, 1954; Wheeless et al., 1966; Komoda et al., 1973; Lis-
berger et al., 1975; Becker and Jürgens, 1979; Aslin and Shea, 1987; Ray et
al., 2004). The task consists of two kinds of trials: no-step trials, in which
a single target is presented; and step trials, in which two targets are pre-
sented in succession. Sixty percent of the trials were no-step trials, and the
two trial types were randomly interleaved.

In no-step trials following fixation for a random duration of 300 � 90
ms (�SD), a green target (1° � 1°), defined by Commission Internation-
ale de l’Eclairage (CIE) coordinates (271, 618, 7.0), appeared on the
screen on a gray background of luminance 0.01 cd/m 2 (see Fig. 1). In
some sessions, the eccentricity was fixed at 12°, but in most others it was
fixed based on the amplitude of the electrically evoked saccade response
at the site.

In step trials, after the presentation of the first target, a second target
(red colored; 1° � 1°), defined by CIE coordinates of 640, 331, and 6.9,
appeared on the screen (see Fig. 1). The time of appearance of the final
target relative to the initial target, called the target step delay (TSD), was
chosen randomly from a set consisting of multiples of screen refresh rates
(16.67, 83.33, 150, and 233.33 ms; the refresh rate was 60 Hz). The ap-
pearance of the second target served as a “redirect” signal that required
the monkeys to withhold the partially planned saccade to the initial target
and make one to the final target instead. Step trials in our task differed
from the earlier double-step studies in two main respects: the initial and
final targets were of different colors to ease the distinction between the
two targets, and the initial target did not disappear with the appearance of
the final target.

Saccade endpoints within a window centered on the target, which
varied in size with target eccentricity (three-tenths of the eccentricity),
was tolerated. In no-step trials, saccade latencies exceeding 400 ms were
discouraged by revoking the reward. This was done to ensure there was
no anticipatory delay confounding speed–accuracy trade-off.

Weibull fit for compensation function. Compensation functions (see
Fig. 1C) were fit by a cumulative Weibull function as follows (Hanes et
al., 1998; Ray et al., 2009):

W�t� � � � �� � �� � exp( � (t/�)�),

where t ranges from the minimum to the maximum TSD, � is the time at
which the compensation function reaches 63.2% of the range from �, the
minimum value, to �, the maximum value, and � is the slope.

Data collection
Experiments were under computer control using TEMPO/VIDEOSYNC
software (Reflective Computing) that displayed visual stimuli and stored
the sampled eye positions. Eye position was sampled at 240 Hz with an
infrared pupil tracker (ISCAN) that interfaced with TEMPO software in
real time. All stimuli were presented on a Sony Trinitron 500 GDM
monitor (21 inch; 70 Hz refresh rate) placed 57 cm in front of the subject.
Stimuli were calibrated with a Minolta CA-96 colorimeter.

Accuracy measurements and calibration of the eye tracker
To calibrate the eye tracker, monkeys made saccades with increased fix-
ation times and postsaccade hold times (mean � 500 ms �30%). The
longer postsaccade time ensured the monkey would fixate at the target
following the saccade and provided time to adjust the gain of the hori-
zontal and vertical eye movement data channels in TEMPO to calibrate
the eye tracker. For these trials, we measured the SD of the eye tracker
positions during a 100 ms fixation period, calculated by measuring the
mean of the SD of 100 ms of eye movement data, which was 0.13°. The
inherent noise of the tracker was calculated by measuring the SD in a 100
ms sample of data when a stable, immovable artificial eye-like object was
recorded. This was �0.08°. The spatial accuracy of the tracker was esti-
mated by measuring the distance of the location where the monkey fix-
ated following the saccade, as measured from the center of the target

(Hornof and Halverson, 2002; Holmqvist et al., 2011). To calculate the
error, the mean eye position over 100 ms of postsaccade fixation data was
computed over four to five trials for each target location. Following this,
the distance between the mean eye position and the target center was
computed, which averaged �1.2° over different locations. The mean of
the SD across three trials was �0.9°, which is another measure of the
spatial accuracy of the data (Kornylo et al., 2003).

Data analyses
Saccade detection was performed using the following procedure
adapted from previous studies (Hanes et al., 1998; Murthy et al.,
2007): blinks were first removed from the eye position data, and a
boxcar filter of �12.5 ms bin width was used to smooth the data. After
smoothing, a 30°/s velocity threshold criterion was used by the algo-
rithm to mark the time points of high-velocity gaze shifts. Saccade
beginning and end were defined as the beginning and end of the
monotonic change in eye position lasting at least 12 ms before and
after the high-velocity gaze shift. The accuracy of saccade detection
was subsequently verified manually.

All analyses and statistical tests were performed off-line using
MATLAB (Mathworks). Statistical measures involving angles were
performed using the MATLAB circular statistics toolbox. All t tests
were performed after checking for normality of the data with the
Lilliefors test on MATLAB, and t tests were two-tailed by default,
unless otherwise mentioned.

Intracortical microstimulation of frontal eye field
The craniotomy was centered on the FEF aided by MR images (Philips
Achieva, 3T) in conjunction with the stereotactic apparatus (see Fig. 2).
Tungsten electrodes (FHC) with impedance of 0.3–1 M� (at 1 kHz) were
inserted transdurally for microstimulation. Negative edge-leading bi-
phasic pulses with 0.2 ms pulse width were administered at a rate of 500
pulses/s for a period of 70 ms to stimulate FEF (Juan et al., 2004). An
optically isolated biphasic stimulator (Bak, BSI-2) was used in conjunc-
tion with a biphasic pulse generator (Bak, BPG-2) to deliver the stimu-
lation pulse. The pulse waveforms, duration, and frequency were
maintained across experiments and stored for each trial.

A fixation task was used to determine the current threshold at a given
site, which is the current strength needed to evoke a saccade on half of the
stimulation trials (Bruce et al., 1985). In this task, the monkey was re-
quired to fixate gaze on the central fixation box for a period of 500 ms. On
half the trials, a stimulation pulse was delivered 300 ms following fixation
onset. The monkey was rewarded on all stimulation trials. The current
strength required to evoke a saccade reliably each time was also deter-
mined and subsequently used in the redirect task. We did not consider
those sites at which saccades were not consistently (�75%) evoked at
currents as high as 120 �A.

The average saccade endpoint from 15 to 20 stimulation trials in the
fixation task was used to determine the evoked saccade response field
(RF). The same was also determined from the stimulated no-step trials,
specifically the early stimulation trials (stimulation delivered �50 ms
after target onset), by taking an average of the evoked saccade endpoints.
At most of the sites (	90%), the deviation of the evoked saccade was not
significantly different from the RF in the direction of the target (one-
tailed t test, p � 0.05).

Target configuration and pulse timing. To facilitate the measurement of
deviation, targets were displayed orthogonal to the RF. As a result, in a
step trial, the locations of the initial and final targets were diametrically
opposite to each other (see Fig. 4 A). The evoked saccade deviation to-
ward the target in a no-step trial was depicted as a positive deviation. In a
step trial, the deviation toward the initial target was depicted as a positive
deviation, whereas that toward the final target was depicted as a negative
deviation. Intracortical microstimulation was applied in a random 50%
of the trials. We stimulated the FEF at six different time points (35, 67,
100, 132, 164, and 196 ms) following the appearance of the target on
no-step trials. The same time points were also used to deliver the stimu-
lation pulse in step trials, but the pulse was delivered only after the final
target appeared. This was done to conserve the number of stimulation
pulses while maintaining temporal resolution. Only trials in which the
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stimulation occurred before first saccade onset were considered for
analysis.

Deviation of the evoked saccade. The deviation of the evoked saccade
was calculated with respect to the RF immediately after saccade onset. In
practice, this was ascertained by calculating the angle made by the line
joining the fixation eye position to the third eye position sample, �12.5
ms after saccade onset. Since the evoked saccade duration was on average
25 ms, we effectively used the midpoint of the saccade to measure the
saccade deviation. Because the midpoint of the saccade was, on average,
the point of maximum curvature, saccade deviations typically reflected
the maximum dynamic range of the saccade deviation profile. In this
study, evoked saccade deviations are initial angular deviations by default
(refer to Discussion for details), unless otherwise mentioned.

Normalization of deviation profile. To compare the deviation profile in
degrees with the probability of error (see Fig. 6), the deviation profile in
step trials was normalized by the no-step saccade deviation magnitude
for that session at 164 ms after target onset. This procedure rescaled the
saccade deviation profile to between 
1 and 1. The saccade deviation
profile was then scaled and shifted to between 0 and 1, which allowed
comparison with the probability of error that also spanned 0 to 1.

Models of double-step performance
We tested eight different computational models (four GO-GO and four
GO-STOP models) that can account for double-step performance, in
principle. The individual units (GO1, GO2, and STOP) in the models
were noisy accumulators of sensory information. Leakiness was set to
zero after initial simulations showed that coefficient of leakiness was
vanishingly small.

According to accumulator models of saccade initiation, a GO process
representative of saccade preparatory activity builds up to a threshold,
following stimulus presentation. A saccade is triggered when this accu-
mulative process reaches a threshold. The rate of accumulation is gov-
erned by the stochastic differential equation, as follows:

daGO�t� �
dt

�
��GO � k � aGO�t�� 	 �dt

�

GO, (1)

where daGO represents change in the GO unit activation within a time-
step dt. dt/� was set equal to 1. The mean growth rate of the GO unit is
given by �GO. 
 is a Gaussian noise term with a mean of zero and an SD
of �. k is the leakage parameter.

According to GO-GO models (see Fig. 7A), two GO processes are
deemed sufficient to explain redirect behavior. The GO1 process is acti-
vated by the first stimulus, and the GO2 process by the second stimulus.
Their rates of accumulation were assumed to be the same. On average,
the units accumulated at the rate of �GO per millisecond, varying with the
SD of �GO. The process that reached the threshold determined whether
the saccade would be initiated at the initial or final target. We formulated
three versions of the GO-GO model based on the nature of the interac-
tion between the two GO units (Usher and McClelland, 2001), as follows:

daGO1�t� �
dt

�
��GO1 � �GO2 � aGO2�t�� 	 �dt

�

GO1, (2)

daGO2�t� �
dt

�
��GO2 � �GO1 � aGO1�t�� 	 �dt

�

GO2, (3)

where, GO1 and GO2 represent the two accumulator units of the GO
process, �GO2 represents the coefficient of inhibition of GO2 on GO1,
and �GO1 represents the opposite.

The coefficients of inhibitory interactions in the independent GO-GO
model (GG-i) were constrained to zero (�GO1 � �GO2 � 0); in the
GO-GO model with symmetric mutual inhibition (GG-s), they were
equal (�GO1 � �GO2); while in the GO-GO model with asymmetric
mutual inhibition (GG-a) they could be unequal (�GO1 
 �GO2). The
fourth GO-GO model (GG-aDiff) was similar to the GG-a model, in that
the coefficients of inhibitory interactions were allowed to be unequal; in
addition, the rates of the GO1 and GO2 processes (�,�) were also allowed
to be different.

GO-STOP models. GO-STOP (GS) models include a third process, the
STOP process, in addition to GO1 and GO2. Four versions of the GO-
STOP models were formulated based on the nature of interaction be-
tween the STOP and GO units, as follows:

daGO1�t� �
dt

�
��GO1 � �GO1 � aSTOP�t�� 	 �dt

�

GO1, (4)

daGO2�t� �
dt

�
��GO2 � �GO2 � aSTOP�t�� 	 �dt

�

GO2, (5)

daSTOP�t� �
dt

�
� �STOP 	 �dt

�

STOP. (6)

In the independent GS model (GS-i), the inhibitory interactions were
constrained to zero (�GO1 � �GO2 � 0). In the GO-STOP-GO (GSG)
version of the interactive GO-STOP model, the STOP process inhibited
the GO processes in a spatially nonspecific manner (�GO1 � �GO2 � 1).
In the GO-GO�STOP (GGS) model, the STOP process was assumed to
be inhibitory in a spatially specific way (�GO1 � 1; �GO2 � 0). A modified
version of the GO-GO�STOP model was also simulated with � as a free
parameter (GGS2; �GO1 
 �GO2; �GO2 � 0).

Model implementation
Simulating no-step trials. To begin with, the parameters that defined the
rates of accumulation of the GO process (�GO and �GO in Eq.1) were
assigned randomly selected arbitrary values, �1 and �1, using a
Mersenne-Twister generator. Following the appearance of the target and
a visual delay period of 60 ms, corresponding to the latency of the visual
response in the oculomotor system (Schmolesky et al., 1998; Pouget et al.,
2005), the accumulator unit integrated sensory information. This was
realized by increasing the value of the accumulator every millisecond by
a randomly picked value from the Gaussian distribution with mean
�1 and SD �1. If the activation of the accumulator unit went below
zero, it was reset to zero and the accumulation continued in the next
time step (Usher and McClelland, 2001). The saccade was triggered
when the value of the accumulator reached the threshold of 1000
units. The time of reaching the threshold was considered the RT for
that trial. By simulating 2000 trials, an RT distribution was obtained.
These simulated and observed RT distributions were compared using
the Kolmogorov–Smirnov (KS) statistic. The KS statistic was mini-
mized in the parameter space (� and �). We repeated this procedure
1000 times, with different sets of initial parameter values (Monte
Carlo method) to ensure convergence to the global minima before
choosing the best set of parameters. The optimal parameter set (�GO

and �GO) was obtained for each session separately.
Simulating step trials. In the first three GO-GO models and all the

GO-STOP models, the GO1 and the GO2 processes were simulated using
the parameters of the no-step GO process determined earlier. However,
in the GG-aDiff model, the rate of accumulation of the GO2 process
(defined by �GO2 and �GO2) was determined by minimizing the KS sta-
tistic between the simulated RT distribution and the RT distribution of
saccades observed in successful responses (see Fig. 1 B1). The procedure
used to determine the optimal parameters of the GO2 process was iden-
tical to the one described earlier for the GO process. The remaining
parameters—�GO1 and �GO2 in the GO-GO models, �STOP, �STOP,

�GO1, and �GO2 in the case of GO-STOP models—were either fixed (e.g.,
�GO1 � �GO2 � 0 for the GG-i model) or assigned arbitrary values for
optimization, depending on the model. One thousand trials were simu-
lated for every TSD condition. Accumulation of all three processes—
GO1, STOP, and GO2— began following a visual delay period of 60 ms.
In a fraction of step trials, for a given TSD, the GO1 process reached the
threshold initiating the saccade to the initial target, despite inhibition
from the GO2/STOP process. These trials form the erroneous responses
(see Fig. 1 B2). The probability of erroneous responses calculated for each
TSD was used to plot the simulated compensation function for that
session (Fig. 7B). The residual error between the simulated and the ob-
served compensation function, as determined by the least-squares
method, was then minimized by the fitting procedure. We repeated this
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procedure 200 –300 times for each model, with different sets of initial
parameter values, to ensure convergence to the global minima. The op-
timal parameter set was obtained for each session and for each model
separately.

Simulation of the evoked saccade deviation profile. The evoked saccade
deviation profile in no-step trials was simulated using the average acti-
vation of the GO process. Since this activity ranges from 0 to 1000 units,
whereas the observed deviation profile is in degrees, ranging from 
90 to
�90, we normalized both the simulated and the observed deviation pro-
files to compare them. Both deviation profiles were normalized by sub-
tracting the respective no-step deviation from the earliest stimulation
time (nostepdevinit). The resulting deviation profiles were scaled by their
respective maximum deviation value (see Eq. 7) (Kustov and Robinson,
1996). In practice, the maximum deviation was estimated by calculat-
ing the median of the last octile of the deviation data at the longest stimu-
lation time point (196 ms).

Normalized no-step deviation �
nostepdev � nostepdevinit

nostepdevmax � nostepdevinit
.

(7)

In step trials, the simulated evoked saccade deviation profile was gener-
ated by subtracting the average activation of the GO2 process from the
GO1 process. To compare the simulated deviation profile with the ob-
served one, normalization, as in Equation 7, was performed (see Eq. 8).
Note, however, that the normalization of the step deviation profile was
performed with respect to the no-step deviation profile for that session
because the complete range of the deviation profile may not be witnessed
in step trials. This is because the GO1 process may be prematurely ter-
minated in step trials, and the stimulation times may not sample the
complete expression of the GO2 process. Also, more importantly, since
the no-step deviation profile is the same across different models, the
comparison among the simulated deviation profiles of the various mod-
els is expected to be insensitive to the normalization process per se.

Normalized step deviation �
stepdev � nostepdevinit

nostepdevmax � nostepdevinit
.

(8)

The evoked saccade deviation profile in step trials is also influenced by
the corrective saccade that is typically elicited following the erroneous
saccade to the initial target (see Fig. 1). Although the parameters of the
preparatory process of the corrective saccade are not known, given that in
our study the corrective saccade (from initial target to final target) is in
the same direction as the correct saccade (from fixation spot to final
target), substituting the corrective saccade process with the GO2 process
is a reasonable approach to simulate the corrective saccade. For simplic-
ity, it was assumed that the corrective saccade preparatory process did
not interact with the GO1 process.

Testing the reliability of the crossover time data
To establish the reliability of the crossover time as a measure, we chose a
random half of the saccade deviation data for each session and the cross-
over time was estimated. This procedure was repeated 25 times, which
provided multiple estimates of the crossover time for each session. We
used Cronbach’s � on repeated estimates of the crossover time to mea-
sure its reliability (Cronbach, 1951). The same procedure was used to
estimate the reliability of the crossover time obtained from the model
simulations that were simulated twice. We deemed two repetitions to be
sufficient since the model simulations involved very large numbers of
trials per simulation. The scale of these simulations was as mentioned
earlier in the Model implementation section.

Weighted-smoothing spline. A weighted-smoothing spline was fit to the
deviation profile obtained in step trials using the MATLAB curve fitting
toolbox. The fit assigned weights to the data from each stimulation time
point based on the number of data points. The weight was 0 if the bin had
less than three data points, 0.5 between three and five data points, 1 for
more than five data points.

Idealizing compensation functions
The observed compensation functions seldom spanned the entire psy-
chometric range (from 0 to 1). This means that at shorter TSDs monkeys
sometimes failed to compensate, and on the other hand, at longer TSDs
they sometimes managed to compensate. Compensation functions pre-
dicted by simulations of the GG-a and all the GO-STOP models could
account for the probability of error at all other TSDs except at the shortest
one (16 ms). In the GO-STOP models, the variance of the STOP process
increased considerably to account for the compensation function. How-
ever, despite the increased variance the models underestimated the prob-
ability of error at the shortest TSD. This anomaly could be due to a bias in
behavior that the ideal models could not accommodate. One approach to
prevent behavioral bias from affecting the parameter estimates, is the
following: if �, the lower asymptote to the Weibull fit of the compensa-
tion function, is the proportion of trials in which the monkey failed to
compensate at the shortest TSD, then we considered � to be the proportion
of trials when the monkey failed to initiate a response to the final target.
These trials were simulated by withholding the GO2 process in GO-GO
models, and the STOP and GO2 processes in the GO-STOP models.

Results
Behavioral data were collected from 56 sessions (31 sessions from
Monkey C and 25 sessions from Monkey D) while monkeys per-
formed the redirect task (Ray et al., 2004; Ramakrishnan et al.,
2010). In this task, monkeys made a quick saccade to the initial
target as soon as it appeared (no-step trials; see Fig. 1A,A1).
However, on random trials when a second target appeared (step
trials; Fig. 1B), the monkeys had to change their plan from mak-
ing a saccade to the initial target to making a saccade plan to the
final target. In some trials, they successfully changed their plan
and made a saccade toward the final target (Fig. 1B1), whereas, in
others, they failed to change the saccade plan (Fig. 1B2). In these
erroneous trials, typically upon reaching the initial target, the
monkeys made a subsequent corrective saccade toward the final
target. Task performance was assessed by varying the time of
appearance of the final target with respect to the initial target—
called the TSD (refer to Materials and Methods for details)—
across trials. The probability of making the erroneous saccade to
the initial target is expected to increase with TSD because it is
harder to change the plan at longer TSDs when one is more commit-
ted to the initial response than at shorter TSDs. As expected, the
probability of error, for a typical session, represented by the black
squares in Figure 1C, increased with TSD. This trend was observed in
most of the sessions (52/56 sessions, two monkeys). The probability
of error for every session was fit with a Weibull curve (the superim-
posed solid blue line in Fig. 1C represents Weibull fit to the typical
session), and the Weibull parameters were determined (for details,
see Materials and Methods, above). The parameters for all 52 ses-
sions are shown as a boxplot in Figure 1D.

Evoked saccade deviation in no-step trials
To determine whether microstimulation can be used to assess the
time course of saccade preparation, a stimulation pulse was ad-
ministered to the FEF (Fig. 2) in a random 50% of no-step trials.
In these trials, microstimulation was delivered following the ap-
pearance of the target while the monkey was preparing a saccade
at various time points (35, 67, 100, 132, 164, and 196 ms) so as to
sample the entire RT duration. After determining the evoked
saccade RF at the stimulation site, the saccade target was placed in
the orthogonal direction to facilitate the measurement of the
deviation of the evoked saccade from the RF. Suprathreshold
microstimulation delivered during saccade preparation evoked a
saccade that deviated away from the RF toward the target. If the
evoked saccade deviation is an index of saccade preparatory ac-
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tivity, then the extent of deviation is expected to increase system-
atically with time. Consistent with this notion, we observed that
the saccade endpoints when stimulated 100 ms after target onset
(Fig. 3A, blue dots) were shifted more toward the target com-
pared with those stimulated before 100 ms (Fig. 3A, black dots).
To test this systematically, we plotted the evoked saccade devia-
tion (based on the initial angular deviation; refer to Materials and
Methods for details) as a function of the time of stimulation for a
typical session. In Figure 3B, the mean evoked saccade deviation
at each of the stimulation times was plotted for a typical session
and fit by a weighted spline function (refer to Materials and
Methods for details). Consistent with the accumulator model, the
extent of deviation increased systematically with the time of stim-
ulation at 51 of 52 sites. In 80% (41/51) of the sites, the mean
deviation toward the target position was significantly different
from the RF by 100 ms post-target onset (one-tailed t test; p �
0.05) and continued to be significant for all subsequent stimula-
tion times. The trend was significant at 37 of 51 sites (one-way
ANOVA, p � 0.05; two monkeys). The linear regression was

significant in 36 of 51 sites (linear regression, p � 0.05 at 36 sites;
two monkeys).

To further validate whether the evoked saccade deviation pro-
file is representative of saccade preparatory activity, sessions as-
sociated with steeper deviation profiles should be the sessions
with shorter saccade RTs. We examined this prediction by plot-
ting the median RT of nonstimulation trials from each session
against the slope of the deviation profile for 51 sites (Fig. 3C). In
accordance with the accumulator model, RTs and slopes were
significantly negatively correlated [r � 
0.5; p � 0.0002, n � 51
sites, two monkeys; linear regression: slope � 
0.0012 (CI �

0.0018 to 
0.0006); intercept � 0.35 (CI � 0.23 to 0.47)],
indicating that median RTs decreased as the slope of the deviation
profile increased. One caveat is that current thresholds, which
varied across sites, could have influenced the slope of the devia-
tion profile. To normalize the effects of current threshold, we per-
formed an ANCOVA by grouping sites into low (�40 �A), medium
(40–50 �A), and high (51–65 �A) thresholds to determine the ef-
fective contribution of RT in predicting the slope of the deviation

Figure 1. Illustration of the temporal sequence of stimuli and behavior in the redirect task. A, B, The task comprised of no-step trials (A), when a single target (green square) appeared on the
screen, and step trials (B), when a second target (red square) appeared after a delay (TSD). A1, In no-step trials, monkeys made a saccade, shown by the yellow arrow, to the target. In step trials,
monkeys were required to withhold their initial saccade and instead initiate a saccade to the final target (blue arrow). B1, Sometimes, the monkeys successfully compensated for the target step. B2,
On other occasions, they failed to compensate, which resulted in an erroneous saccade to the initial target, which was usually followed by a corrective saccade to the final target. C, Compensation
functions. Black squares represent the probability of error at each TSD for a representative session. The solid-blue line is the Weibull fit. The probability of making the erroneous first saccade increases
as TSD increases. D, Weibull fit parameters (�, �, �, and �) for the data from 2 monkeys (52 sessions) are shown as a boxplot. Whiskers, Range; blue box, interquartile range; notch, 95% confidence
limit; red line, median.
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profile. The relation between slope of the
deviation profile and RT remained signifi-
cant nonetheless (ANCOVA, p � 0.0099;
n � 47 sites, two monkeys; stimulation
threshold data unavailable for 4/51 sites), re-
inforcing the notion that variability in the
deviation was related to the stochasticity in
RT. Together, the pattern of deviations away
from the RF in no-step trials is consistent
with the prediction from accumulator mod-
els of RT and indicates that microstimula-
tion can index the evolution of saccade
preparation.

Evoked saccade deviation in step trials
To determine whether microstimulation
can be used to track a changing saccade
plan, we administered the microstimula-
tion pulse on a random half of the step
trials following the onset of the final target
at various time points (refer to Materials and
Methods for details) and systematically mea-
sured the pattern of evoked saccade devia-
tion. If the evoked saccade deviation is an
index of the evolving motor plan, then a
change of plan, as demanded by the ap-
pearance of the final target, should pro-
duce a characteristic pattern of evoked
saccade deviation. More specifically, in a
step trial when a stimulation pulse is de-
livered soon after the onset of final target,
the saccade preparatory activity to the
initial target is yet to be modified, and
therefore it is more likely for the evoked
saccade to deviate toward the first target
(Fig. 4A, middle row of panels). Whereas,
when a stimulation pulse is delivered long
after the onset of final target, the saccade
preparatory activity to the initial target is
already modified, and therefore it is more
likely for the evoked saccade to deviate to-
ward the final target (Fig. 4A, bottom row
of panels). In Figure 4B, the median of the
saccade deviations at each of the stimulation times for a particular
TSD (TSD � 80 ms) is plotted, and the data were fit by a weighted
smoothing spline. Consistent with the prediction, we observed a
gradual shift in the median evoked saccade deviation, starting with
an initial bias toward the first target, which over time changed to a
bias toward the second target. This trend was observed in 43 of 51
sessions that had three or more data points at every stimulation time
bin. The time when the evoked saccade deviation profile crossed
over toward the final target was assessed by determining the time
when the fit crossed the RF—the crossover time. The crossover time
was �91 ms for the TSD (TSD � 80 ms) shown in Figure 4B. Figure
4C illustrates data from the same session in which trials from the first
three TSDs have been pooled together to facilitate an average esti-
mate of the crossover time for each session. For the longest TSD (234
ms), the earliest stimulation evoked a saccade at �300 ms after the
initial target. The voluntary saccade (mean RT � 200 ms) was initi-
ated by then in most trials and therefore data from this TSD were
excluded from this analysis. On average, the crossover time was
100 � 3.9 ms (�SE) (minimum � 48 ms; maximum � 150 ms; 43
sites; two monkeys) post-final target onset. The crossover time is

important because it can be construed as denoting the time when the
plan changes, as assessed through microstimulation.

To test the validity of the crossover time as a behavioral esti-
mate of the time when the plan switched, we assessed whether the
crossover time can predict the trial fate in single trials. For this,
the crossover time obtained from the deviation profile for a given
session was added to the time of appearance of the final target in
a given trial, to estimate the time of lapse of the crossover time
period, hereafter referred to as “switch time.” If the saccade is
evoked after switch time (Fig. 5A), then a change of plan should
have occurred by then, and the saccade should deviate toward the
final target; the subsequent voluntary saccade should be made to
the final target— devF-resF (which stands for deviation toward
final target followed by a saccadic response to final target) (Fig.
5B). In contrast, if the saccade is evoked before switch time, the
evoked saccade should deviate toward the initial target. However,
the subsequent voluntary saccade could be made to the final
target— devI-resF (which stands for deviation toward initial tar-
get followed by a saccadic response to final target)— or to the
initial target— devI-resI (which stands for deviation toward ini-

Figure 2. Location of the recording well and the stimulation sites. A, Left, Top view of the recording well in the two monkeys.
Right, Cortical areas beneath the well, seen within the red outline, accessible to the microelectrode. As, Arcuate sulcus. All images
are 3-D reconstructed 3 T MR images. B, Each dot represents a stimulation site in the anteroposterior (A-P)–mediolateral (M-L)
plane relative to the center of the recording well with coordinates of (6, 6). The color indicates the number of stimulation sites at the
coordinate location but at different depths.
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tial target followed by a saccadic response to initial target)—
depending on whether switch time occurs before the subsequent
voluntary saccade. These three types of predicted behaviors were
observed in every session for both monkeys. To test whether the
occurrence of these behaviors is a function of the switch time
relative to the evoked saccade (Fig. 5A, orange arrow), we plotted
the relative frequency of each behavior. Since the trials are plotted
with respect to the evoked saccade onset rather than relative to
the time of stimulation, this analysis controls for the latency of
evoked saccade across sessions, allowing all the data to be pooled
together (	2000 trials, two monkeys). Consistent with our pre-
diction, for trials in which switch time occurred long before the
evoked saccade, the dominant behavior was the devF-resF re-
sponse (	70%), which monotonically decreased as the switch
time approached the time of the evoked saccade (Fig. 5C). Trials
for which the switch time occured long after the evoked saccade,
the dominant behavior was the devI-resI response (	60%),

which monotonically decreased as the switch time approached
the time of the evoked saccade. The gradual change in the relative
frequency of both the behaviors was given by the slope of the
linear fit to the change in relative frequency and was significant
for both behaviors (p � 0.005). When the time of stimulation
coincided with the switch time, i.e., when the stimulation is de-
livered at the crossover time (Fig. 4), the resultant deviation
about the RF being zero, frequencies of devF-resF and devI-ResI
behaviors are expected to be matched, which is what is observed.
Furthermore, and most importantly, for the devI-resF trials that
overtly showed a change of plan the switch time is expected to occur
soon after the evoked saccade onset but before the subsequent vol-
untary saccade. Consistent with this prediction, the relative fre-
quency of devI-resF trials peaked during the evoked saccade.

We also tested the reliability of the crossover time estimates by
calculating Cronbach’s � (Cronbach, 1951), a measure of inter-
nal consistency, on repeated estimates of the crossover time that
were obtained by randomly splitting the data into halves (refer to
Materials and Methods for details). An � of 1 implies that the
repeated estimates are replicas of each other and reliability is
high, whereas an � of 0 implies that the estimates are noisy and
reliability is low. The value of � obtained for the observed cross-
over times (� � 0.96) was high, suggesting that the crossover
times were reliably estimated. Together, these analyses indicate
that the crossover times obtained from the step deviation profile
are reliable and unbiased estimates of the time when the monkey
changed the saccade plan.

Testing models of double-step performance
To identify the underlying mechanisms that give rise to task per-
formance and evoked saccade deviation profile in the redirect
task, we tested predictions from eight different accumulator
models (four GO-GO models and four GO-STOP models; refer
to Materials and Methods for details). The ability of the behav-
ioral models to predict the evoked saccade deviation profile is
based on the hypothesis that the saccade deviation profile reflects
task performance. We therefore assessed whether the saccade de-
viation toward the initial target as a function of TSD matches the
compensation function. For this analysis, we chose a subset of
stimulated step trials such that the time of stimulation, measured
with respect to the initial target onset, was as close to the behav-
ioral RT as possible (164 ms). These trials belonged to one of the
three TSDs (16, 80, and 144 ms). For these trials, we determined
the deviation of the evoked saccade as a function of TSD. To
compare the deviation profile in degrees with the probability of
error, the deviation profile was normalized (refer to Materials
and Methods for details). Figure 6A shows the normalized sac-
cade deviation profile and the probability of error as a function of
TSD. As expected, the estimate of task performance obtained
from the evoked saccade deviation conformed to the general
trend of increasing toward the initial target as TSD increased, like
the compensation function. This trend was seen in most of the
sites (50/52 sites; two monkeys). To test how well the perfor-
mance estimate from the deviation profile matched the compen-
sation function, they were regressed against each other (Fig. 6B).
Since the regression slopes obtained across sessions were not sig-
nificantly different from unity (median � 1.04; Wilcoxon’s
signed-rank test, p 	 0.18; 50 sites; two monkeys) (Fig. 6C), the
performance estimate from the deviation profile provided a good
explanation of the observed compensation function. This con-
firmed that the stimulation pulse did not interfere with task per-
formance. More importantly, the evoked saccade deviation faithfully
tracked performance, which validated the utility of evoked saccade

Figure 3. Evoked saccade deviation in no-step trials. A, The fixation spot (black box), evoked
saccade RF (tip of the brown arrow), and the target (green-filled square) are shown for a typical
trial. Suprathreshold microstimulation, administered while the monkey prepared a saccadic
response to the target, evoked a saccade whose endpoints are shown as black dots for a stim-
ulation time of �100 ms, and blue dots for a stimulation time of 	100 ms after target onset.
Gray and blue squares represent the median of the endpoint locations. The voluntary saccade
that follows the evoked saccade is not shown. B, Systematic changes in the initial angular
deviation of the evoked saccade with respect to the RF is shown as a function of stimulation
time. The mean deviation (red-filled circles) is fit by a weighted-smoothing spline (solid black
line). The dashed blue lines represent the 95% CI. RF, 0°; target, 90°. C, Median RT of the first
saccade in a nonstimulated trials in a session is plotted on the x-axis and the slope of the no-step
deviation profile for the corresponding session on the y-axis. Each cyan-filled circle represents
data from a session (N � 51 sites). Linear regression of the data is shown by the black dashed
line.
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deviation profiles to test the predictions of
behavioral models of the redirect task along
with the compensation function.

We also determined whether the mon-
keys’ ability to sense the microstimulation
pulse (Murphey and Maunsell, 2008)
would help them predict the current trial
type. This is because, according to para-
digm design, since stimulation pulse was
not delivered in step trials if the final tar-
get had not yet appeared, the proportion
of step trials in which the stimulation
pulse was delivered early were fewer com-
pared with the no-step counterparts. If the
monkey can sense the stimulation pulse,
then the absence of stimulation early on in
the trial can be used to predict the step
trial and delay the first saccade prepara-
tion. Therefore,saccades are expected to
be delayed in longer TSD step trials com-
pared with the no-step saccade latency.
On the other hand, if the monkey was un-
able to delay the saccade, the saccade la-
tency of step trials should be shorter (the
longer ones will be inhibited/modified),
or at most matched to the no-step saccade
latency. To test this, we compared the RT
distribution of the first saccade (to the ini-
tial target) in longer TSD step trials
(TSD � 224 ms) with no-step RT distri-
bution. Consistent with the latter hypoth-
esis, we observed that the mean latencies
of the saccades in step trials were either
matched or shorter than the no-step sac-
cade latency in most of the sessions (39/43
sessions; t test, p 	 0.05), suggesting that
the monkey was, in general, unable to use
the information to delay the saccade pref-
erentially in the step trials. As a result, the
rate of the saccade preparation process in
step trials was not different from that in
no-step trials.

GO-GO models
Theoretically, the simplest model that can account for perfor-
mance in a redirect task involves the use of two independent
integrators—two GO-accumulators (refer to Materials and
Methods for details)—GO1 and GO2, which represent the evolv-
ing motor plan to initiate a saccade following the onset of the
initial and final target, respectively (Becker and Jürgens, 1979).
The units of the GG-i model were simulated by borrowing the
parameters of the no-step GO process (refer to Materials and
Methods for details). The GO1 and GO2 units accumulated to the
threshold independent of each other (�1 � �2 � 0; refer to
Materials and Methods for details) (Fig. 7A). A saccade to the first
target was initiated if the GO1 process reached threshold first,
whereas a saccade to the final target was initiated if the GO2
process reached the threshold first. The probability of initiating
the first saccade (compensation function) predicted by such a
model is shown (Fig. 7B) along with the observed compensation
function for the example session (Fig. 7B, blue). To assess how
well the predicted compensation function matched the observed
one, the residual variance was calculated. The GG-i model under-

estimated the total variance (residual variance � 0.47), and this
trend was observed in all the sessions (Fig. 7C; median residual
variance across sessions � 0.32; 43 sessions; two monkeys). The
cumulative RTs of the erroneous and the successful responses
predicted by the model were compared with the data for the
example session (Fig. 7D). The erroneous saccade RTs predicted
by the model were similar to the observed RTs (t test, p 	 0.05),
while the successful saccade RTs were overestimated (t test, p �
0.05). However, both RTs were well predicted in a majority of the
sessions (erroneous saccade, 28/43 sessions; successful saccade,
23/43 sessions), with the average predicted RT underestimating
the observed RT for both saccades (erroneous saccade, 7 ms;
successful saccade, 6 ms). The evoked saccade deviation profile
was also compared with the simulated profile based on the GG-i
model (Fig. 8A; refer to Materials and Methods for details). For
this, the residual error, the crossover time of the deviation profile,
and the range of deviation of the deviation profile were com-
pared. The range of the deviation profile was measured by sum-
ming the maximum deviation to the initial and final targets on

Figure 4. Evoked saccade deviation in step trials. A, In the top row of panels, when a stimulation pulse (blue oscillations) is
delivered, a saccade (blue arrow) is evoked. The middle and bottom rows represent a short TSD (16 ms) trial that is microstimulated
by either a short-latency (10 ms) or a long-latency (140 ms) pulse. The subsequent panel shows the evoked saccade, the saccade
under preparation, and the averaged saccade as blue, black, and red arrows, respectively. Note that the black arrows are shown
short of the target to represent saccades under preparation. The right-most panels show the observed saccade. The dots forming
the saccade represent the eye position samples. At early stimulation times, the resultant averaged saccade is expected to be toward
the initial target while at later stimulation times it is expected to be toward the final target. B, The evoked saccade deviation profile
in a typical session for a particular TSD (80 ms) is shown. C, The averaged saccade deviation profile for the session from the three
TSDs (16, 80, and 144 ms) is shown after aligning each of them to the onset of the final target. In B and C, the median of the
deviation (red circles) is fit by a weighted-smoothing spline (solid black line). The dashed blue lines represent the 95% CI. Crossover
time (CT) represents the time when the deviation profiles cross the RF toward the final target (denoted by the red arrow), as
estimated from the fit.
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either side of the RF. This estimate was normalized (refer to Ma-
terials and Methods for details) for comparison. The simulated
deviation profile based on this model underestimated the total
variance (residual variance � 1.002). This trend was observed in
all the sessions (median residual variance across sessions � 0.42;
43 sessions; two monkeys). Furthermore, the simulated profile
underestimated the range of deviation (Fig. 8; range: data, 0.77;
model, 0.2), and it also failed to cross over toward the final target,
unlike in the observed deviation profile. This trend was observed
frequently: the model underestimated the range significantly (t
test, p � 0.001; 43 sites; two monkeys), and on most occasions the
deviation profile did not cross over toward the final target (36/43
sites). Together, the GG-i model failed to predict the compensa-
tion function and the saccade deviation profile. This result is
expected because such a model does not allow for the inhibition/

cancellation of the response preparation
to the first target. And since the saccade
preparation to the first target is never
stopped, the deviation profile does not
crossover on most occasions.

To overcome the disadvantages of this
model we introduced mutually inhibitory
interactions between the accumulators
(Usher and McClelland, 2001). Such a
model with symmetric mutual inhibition
(i.e., GG-s) has been successful in explain-
ing choice RTs and neurophysiological
data in two alternative forced-choice par-
adigms. We tested whether this model
could explain behavior in the redirect
task. In this model, the GO2 unit inhib-
ited the GO1 unit in proportion to its
activity and vice versa. Simulations were
performed to determine the optimum
value of the coefficient of inhibition (�;
see Materials and Methods for details;
Tables 1, 2 show the optimized parame-
ters obtained postsimulation that were
used to generate the predicted compensa-
tion function). Despite introducing
mutual inhibition, the simulated com-
pensation function (Fig. 7B) underesti-
mated the total variance (residual variance
for the example data, 0.47; population
median, 0.33). The erroneous saccade RTs
predicted by the model were similar to the
observed RTs (t test, p 	 0.05), whereas
the successful saccade RTs were overesti-
mated (t test, p � 0.05) in the example
session. However, both RTs were well pre-
dicted in a majority of the sessions (erro-
neous saccade, 29/43 sessions; successful
saccade, 23/43 sessions) with the average
predicted RT underestimating the ob-
served RT (erroneous saccade, 6 ms; suc-
cessful saccade, 6 ms). The simulated
evoked saccade deviation profile based on
this model (Fig. 8A) underestimated the
total variance (residual variance � 1.07).
This trend was observed in all the sessions
(median residual variance across ses-
sions � 0.41; 43 sessions; two monkeys).
The range of deviation profile was under-

estimated (range: data, 0.77; model, 0.19), and the deviation pro-
file failed to cross over toward the second target, unlike in the data
(Fig. 7C). Overall, the model underestimated the range (t test,
p � 0.001; 43 sites; two monkeys), and the on most occasions the
deviation profile did not cross over toward the final target (36/43
sites). In all, the GG-s model too failed to predict the compensa-
tion function and the observed deviation profile. This result is
expected because in a symmetric mutual inhibition model the
more mature GO1 process can always inhibit the weaker GO2
process more strongly than vice versa, which leads to inhibition
of the GO2 process on most occasions. Motivated by the failure of
the previous models in efficiently inhibiting the GO1 process, we
developed and assessed models that explored different ways to
achieve increased inhibitory control over the GO1 process, in an
attempt to account for behavior and the deviation profiles.

Figure 5. Behavioral relevance of the crossover time. A, Time line of a stimulated step trial showing the time of onset of the
initial target (IT), final target (FT), time of stimulation (Stim), time of evoked saccade (ES) onset, and switch time (ST). B, The three
types of behavior that occur depending on the evoked saccade onset with respect to the switch time (shown by the orange
horizontal arrow in A). Left, A trial in which the evoked saccade deviated toward the final target and the subsequent voluntary
saccade response was made to the final target (DevF-ResF). Middle, A trial in which the evoked saccade deviated toward the initial
target and the subsequent voluntary saccade response was made to the final target (DevI-ResF). Right, A trial in which the evoked
saccade deviated toward the initial target and the subsequent voluntary saccade response was made to the initial target (DevI-
ResI). Green and red squares represent the initial and final target, respectively. The blue square represents the RF at the stimulation
site. The sampled eye movement trajectory is shown as black-filled dots. C, Plot showing the relative frequency of the three types
of behaviors as a function of the evoked saccade onset with respect to the switch time. In this plot, 0 represents the time of evoked
saccade onset, trials to the left of 0 are those in which the switch time occurred before the saccade onset, and trials to the right of
0 are those in which the switch time is yet to occur. Trials are binned into 20 ms bins and the relative frequency was calculated for
each time bin. The change in relative frequency of DevF-ResF and the DevI-ResI trials are fit by a linear fit (dashed green and red
line). The width of the light brown box and that of the light blue box mark the average latency of the evoked saccade (48 ms) and
the evoked saccade duration (25 ms) respectively.
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GO-GO models with asymmetric mutual inhibition
One way to modify the GO-GO model is to make the coefficients
of inhibitory interactions asymmetric, which allows stronger
GO2 inhibition on GO1 than vice versa. Such a GG-a model has
been used successfully to explain performance and neurophysio-
logical data in the countermanding task (Boucher et al., 2007).
However, its applicability to the redirect task has not been as-
sessed. Simulations were performed to determine the coefficients
of inhibition, �1 and �2 (see Materials and Methods for details).
The compensation function generated by this model fit the ob-
served function quite well both in the example data (Fig. 7B;
residual variance � 0.008) and across sessions (Fig. 7C; median
residual variance � 0.008). The erroneous saccade RTs predicted
by the model were similar to the observed RTs (t test, p 	 0.05),
whereas the successful saccade RTs were overestimated (t test,
p � 0.05) in the example session. However, both RTs were well
predicted in a majority of the sessions (erroneous saccade, 29/43
sessions; successful saccade, 23/43 sessions). On average, the pre-
dicted RT of the erroneous saccade was underestimated by 6 ms,
whereas the RT of the successful saccade was overestimated by 7
ms. The simulated deviation profile for the example session (Fig.
8A) showed good improvement over the earlier models: the re-
sidual variance in the example session was low (residual vari-
ance � 0.15), and this trend was observed in all the sessions (Fig.
8B) [median residual variance � 0.15, interquartile range
(IQR) � 0.18]. Further, the predicted range of deviation profile
(data, 0.77; GG-a model, 0.67) and the predicted crossover time
(data, 102 ms; GG-a model, 122 ms) were close to the observed
values. The crossover times and the range of deviation from all

sessions were plotted against their counterparts from the model
as a scatter plot (Fig. 8C). The predicted range correlated with the
observed range across sessions (GG-a: r � 0.47; p � 0.01), and the
range magnitudes were also matched (t test, p 	 0.05). However,
the predicted crossover times were not well correlated with the
observed times across sessions (GG-a: r � 0.27; p 	 0.05), and the
model significantly overestimated the time of crossover (t test,
p � 0.01). This evidence suggests that the GO2 process by itself
might not be effective enough to inhibit the GO1 process soon
enough, leading to overestimated crossover times. To strengthen
the inhibition on the GO1 process, we modified the GO2 process
in the GG-aDiff model. More specifically, the two GO units were
allowed to accumulate at different rates, in addition to having
asymmetric inhibitory interactions. Such architecture allows the
GO2 unit to accumulate faster, facilitating its inhibition over the
GO1 unit above and beyond the GG-a model. Simulations were
performed to first determine the rates of the GO2 process, and
then the coefficients of inhibition �1 and �2 (see Materials and
Methods for details). The compensation function generated by
this model fit the observed function quite well both in the exam-
ple data (Fig. 7B; residual variance � 0.0005) and across sessions
(Fig. 7C; median residual variance � 0.0006). The erroneous
saccade RTs predicted by the model were similar to the observed
RTs (t test, p 	 0.05), whereas the successful saccade RTs were
overestimated (t test, p � 0.05) for the example session. However,
both RTs were well predicted in a majority of the sessions (erro-
neous saccade, 29/43 sessions; successful saccade, 28/43 sessions).
On average, the predicted RT of the erroneous saccade was un-
derestimated by 6 ms, whereas the RT of the successful saccade
was overestimated by 4 ms. The simulated deviation profile for
the example session (Fig. 8A) was a good match to the observed
deviation profile: the residual variance was low (residual vari-
ance � 0.10), and this trend was observed across sessions (Fig.
8B; median residual variance � 0.17, IQR � 0.16). Further, the
predicted range of deviation profile (data, 0.77; GG-aDiff model,
0.73) and the predicted crossover time (data, 102 ms; GG-aDiff
model, 111 ms) were close to the observed values. The crossover
times and the range of deviation from all sessions were plotted
against their counterparts from the model as a scatter plot (Fig.
8C). The predicted range correlated with the observed range
across sessions (GG-aDiff: r � 0.53; p � 0.001), and the range
magnitudes were matched too (t test, p 	 0.05). However, the
predicted crossover times were not well correlated with the ob-
served ones across sessions (GG-aDiff: r � 0.20; p 	 0.05) and the
model significantly overestimated the time of crossover (t test:
p � 0.01), like the GG-a model. Thus, the inability of the two
GO-GO asymmetric models to explain the data suggests that the
GO2 process was unable to inhibit the GO1 process early enough
and/or strongly enough. This might reflect a limited degree of
freedom to capture the shape of the deviation profile.

GO-STOP models
Another way to strongly inhibit the GO1 process is to include an
independent source of inhibition called the STOP unit (Fig. 7A).
In these models, the onus is on the STOP unit, rather than the
GO2 accumulator unit, to inhibit the GO1 process. Such a model
retains the number of free parameters (four free parameters—�
and � of GO and STOP, respectively) as in the GO-GO asymmet-
ric models while providing greater flexibility to capture the
deviation profile. The GS-i model is the simplest form of the
GO-STOP model. This is an independent race model that has
successfully accounted for the behavior and RTs in the double-
step task (Camalier et al., 2007), as in the countermanding task

Figure 6. Assessment of task performance using microstimulated step trials. A, The proba-
bility of making the erroneous first saccade in the nonstimulated trials (black squares that are
line-fit with a black line) is plotted on the y1-axis as a function of TSD. The y2-axis shows the
normalized deviation (solid gray circles that are line-fit with a gray line; obtained from stimu-
lated trials as a function of TSD. B, The normalized deviation ( y-axis) is plotted against the
probability of error (x-axis), with the gray solid line depicting the linear fit and the dashed black
line depicting the line of unity slope. Note that the slope of the linear fit is close to unity. C, The
slopes of the linear fit to the data, as described in B, are shown as a boxplot (N � 50 sites). The
black line at the center represents the median, the notch represents the 95% confidence limit of
the median, the extent of the box is the interquartile range, and the whiskers represent the
range.
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(Logan and Cowan, 1994). In this model, the GO1 and the STOP
process race to threshold independent of each other (�GO1 � 0).
If the GO1 process wins the race, then the saccade to the initial
target is elicited; whereas, if the STOP process wins the race, then
the saccade to the initial target is successfully withheld, allowing
the subsequent GO2 process to elicit a saccade to the final target
on reaching the threshold. Simulations were performed to deter-
mine the parameters of the STOP process (�STOP and �STOP) that
optimized the fit of the predicted compensation function to the
observed one. The compensation function generated by this
model fit the observed one quite well both in the example session
(Fig. 7B; explained variance � 0.0002) and across sessions (me-
dian residual variance � 0.0009; 43 sites; Fig. 7C). The erroneous

saccade RTs predicted by the model were
similar to the observed RTs (t test, p 	
0.05), whereas the successful saccade RTs
were overestimated (t test, p � 0.05) in the
example session. However, both RTs were
again well predicted in a majority of the
sessions (erroneous saccade, 26/43 ses-
sions; successful saccade, 23/43 sessions).
On average, the predicted RT of the erro-
neous saccade was underestimated by 6
ms, whereas that of the successful saccade
was overestimated by 7 ms. Even though
the GS-i model is a good predictor of be-
havior, a strict implementation of this
model reduces it to the GG-i model, since,
unlike the GO process that conveys an
evolving motor signal, the STOP process
in and of itself is not expected to affect the
deviation profiles. Therefore, such a
model cannot account for the observed
deviation profiles.

To overcome this problem, we allowed
the GO and STOP processes to interact-
interactive GO-STOP (intGS) model - as
in an earlier study (Boucher et al., 2007).
In the simplest version of such a model,
the GSG model, the STOP process inhib-
ited both the GO1 and GO2 processes in
the same way (�GO1 � �GO2 � 1). Al-
though the GO processes and STOP inter-
act in this model, by fixing the coefficient
of interaction (�GO1 and �GO2) at unity
we have retained the same number of free
parameters (four free parameters—� and
� of GO and STOP, respectively) as in the
GO-GO asymmetric models and the GS-i
model. The spatially nonspecific inhibi-
tory interaction seen in this model emu-
lated a global STOP signal much like the
fixation neurons in the oculomotor sys-
tem (Hanes et al., 1998; Paré and Hanes,
2003). As a result, for the period of time
when the STOP process inhibited the
GO1 process, the GO2 process was also
suppressed. Therefore, the GO2 process
could accumulate unhindered only after
the GO1 process was inhibited. Simula-
tions were performed to determine the
parameters of the STOP process (�STOP

and �STOP) that optimized the fit of the
predicted compensation function. Model fits were good, both in
the example data (Fig. 7B; residual variance � 0.01) and across
sessions (Fig. 7C; median residual variance� 0.007). The errone-
ous saccade RTs predicted by the model were similar to the ob-
served RTs (t test, p 	 0.05), whereas the successful saccade RTs
were overestimated (t test, p � 0.05) in the example session.
However, both RTs were well predicted in a majority of the ses-
sions (erroneous saccade, 29/43 sessions; successful saccade,
23/43 sessions). On average, the predicted RT of the erroneous
saccade was underestimated by 6 ms, whereas that of the success-
ful saccade was overestimated by 3 ms.

In addition to predicting behavior, the simulated deviation
profile for the example session (Fig. 8A) was a good match to the

Figure 7. Models of redirect behavior. A, Architecture of different GO-GO and the GO-STOP models. The accumulator units (GO1,
GO2, and STOP) that accrue information at rates defined by their respective parameters (� and �) are interconnected by mutually
inhibitory connections (black lines terminating in red-filled circles) of strength �. B, The compensation function generated by the
different models (colored line fits) is shown with the observed compensation function (in blue) adapted from Figure 1C. C, The
residual variance across all sessions is represented by a boxplot for each of the models. Whiskers, Range; blue box, interquartile
range; notch, 95% confidence limit; red line, median. D, Saccade RT distributions. The cumulative RT distribution of the erroneous
saccade (left) and the successful saccade (right) for both the data and each of the simulated models is plotted for the example
session. The data have been grouped into 40 ms time bins.
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observed one: the residual variance was low (residual variance �
0.36), and this trend was observed in all sessions (Fig. 8B; median
residual variance � 0.19, IQR � 0.18). Further, the predicted
range of deviation profile (data, 0.77; GSG model, 0.53) and the
predicted crossover time (data, 102 ms; GSG model, 147) were

close to the observed values. The crossover times and the range of
deviation from all sessions were plotted against their counter-
parts from the model as a scatter plot (Fig. 8C, column of panels).
The predicted range correlated with the observed range across
sessions (r � 0.5; p � 0.001), and the range magnitudes were also

Figure 8. Comparison of the model fits to the evoked saccade deviation profile. A, The evoked saccade deviation profile in step trials as predicted by the different models (colored line fits) is shown
with the observed deviation profile (in blue, adapted from Fig. 4C). The y-axis represents normalized deviation. B, The residual variance, calculated based on the predicted and observed evoked
saccade deviation profile, for all sessions, is represented by a boxplot for five of the models. The boxplot conventions are as in Figure 7C. C, The scatter plots compare the predicted and observed time
of crossover (top row of panels) and the range of the deviation profile (bottom row of panels) for five models. In all panels in C, each data point represents the estimates from a session, and the dashed
line represents the line of unity slope.
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matched (t test, p 	 0.05). The predicted crossover times were
also well correlated with the observed ones across sessions (GSG:
r � 0.45; p � 0.01). Cronbach’s � for the crossover time estimates
from the simulation was 	0.99 (refer to Materials and Methods
for details). Since both the observed and predicted crossover
times were consistent, the correlation was reliable as well. How-
ever, the GSG model significantly overestimated the time of
crossover (t test, p � 0.05).

The crossover times predicted by the GSG model correlated sig-
nificantly with the observed crossover times, suggesting that this
model could capture the nature of interaction between the processes
involved. However, since this model overestimated the crossover
time, we slightly modified the GSG model by making the STOP

process spatially selective. More specifically, in this version of the
intGS model—the GGS model—the STOP process selectively inhib-
ited the GO1 unit, allowing the GO2 unit to accumulate following
final target onset. Thus, as compared to the GSG model, the accu-
mulation of the GO2 process advanced unhindered, leading to faster
GO2 RTs in the GGS model. This modification biases the deviation
profile toward the final target without altering the nature of relation-
ship between the GO1 and the STOP process (�GO1(GSG) �
�GO1(GGS) � 1). Since the inhibitory interaction between the GO2
and the STOP process was fixed (�GO2 �0), this model had the same
number of free parameters (four free parameters—� and � of GO
and STOP, respectively) as the GSG model. We also tested another
version of the GGS model (GGS2) in which the coefficient of inhib-

Table 1. List of the optimal parameters obtained from simulations based on models shown in Figure 7A for Monkey C

GO

GG-s (�)

GG-a GG-aDiff GS-i intGS(GGS/GSG) intGS(GGS2) GO2

�GO �GO �1 �2 �1 �2 �STOP �STOP �STOP �STOP �STOP �STOP � STOP �GO2 �GO2

6.340 24.071 0.000 0.013 0.169 0.012 0.160 15.352 161.067 0.000 2.200 1.809 220.532 0.011 4.641 28.104
6.406 29.990 0.001 0.000 0.975 0.020 0.865 75.000 245.323 51.012 612.238 16.401 62.690 0.217 8.190 28.558
6.946 31.672 0.000 0.035 0.744 0.026 0.332 35.610 77.244 0.257 0.037 22.567 38.980 0.010 6.503 37.041
6.568 22.328 0.000 0.007 0.089 0.009 0.086 5.081 245.209 0.000 2.968 0.000 299.999 0.010 7.325 29.597
5.876 18.403 0.000 0.020 0.841 0.036 0.996 24.197 20.538 0.123 0.000 10.291 0.013 0.010 7.501 25.738
5.755 21.618 0.003 0.000 0.056 0.029 0.806 59.844 26.628 0.345 0.000 27.224 0.000 0.010 7.990 30.608
6.380 16.620 0.000 0.008 0.176 0.008 0.086 11.963 199.548 0.000 2.860 0.000 108.699 0.025 7.302 30.009
6.530 18.176 0.000 0.008 0.083 0.007 0.039 3.027 169.494 0.046 1.436 2.375 165.594 0.010 7.082 27.088
7.259 19.762 0.001 0.011 0.146 0.014 0.117 22.910 89.424 0.129 0.004 5.212 21.070 0.023 7.707 28.745
6.558 15.949 0.000 0.011 0.126 0.008 0.039 16.780 64.327 0.066 0.023 7.209 21.872 0.010 6.778 21.475
6.112 16.946 0.001 0.017 0.718 0.034 0.965 27.391 27.155 0.147 0.000 11.399 0.136 0.011 7.426 27.395
6.762 16.412 0.001 0.020 0.599 0.040 0.898 16.173 34.403 0.078 0.000 6.959 0.000 0.011 7.064 27.916
5.980 20.159 0.000 0.012 0.217 0.009 0.046 23.543 93.974 0.095 1.706 0.420 204.722 0.010 9.260 28.580
6.316 14.993 0.000 0.007 0.079 0.002 0.014 15.132 122.363 0.003 1.820 0.004 177.038 0.010 7.990 27.196
6.299 15.864 0.000 0.020 0.855 0.031 0.986 19.323 20.091 0.091 0.061 8.546 0.504 0.010 6.374 23.612
6.306 25.609 0.002 0.027 0.724 0.028 0.653 25.944 22.331 0.159 0.000 2.094 9.891 0.084 7.111 26.219
5.337 21.934 0.000 0.006 0.653 0.013 0.938 74.993 20.000 13.656 109.249 38.412 144.137 0.485 7.369 24.880
5.894 19.741 0.000 0.013 1.000 0.005 0.139 71.298 300.000 0.485 0.009 41.181 0.000 0.018 6.844 25.119
4.687 24.413 0.000 0.031 0.548 0.030 0.351 13.149 34.173 0.067 0.000 6.212 6.097 0.010 5.862 26.859
5.708 19.273 0.000 0.006 0.045 0.006 0.028 8.172 138.372 0.014 1.070 0.001 130.878 0.011 6.631 30.245
4.951 20.741 0.002 0.026 0.834 0.034 0.985 19.670 20.000 0.069 0.025 6.883 0.000 0.012 6.409 23.851
6.174 23.365 0.000 0.011 0.339 0.010 0.227 71.314 163.994 0.000 5.676 2.908 88.196 0.046 6.831 32.345
5.064 18.729 0.001 0.000 0.266 0.005 0.727 73.677 297.229 100.000 797.646 76.724 234.137 0.877 6.038 31.543
4.679 25.540 0.003 0.004 0.065 0.025 0.381 59.894 106.834 0.203 1.773 38.978 300.000 0.010 7.514 33.088
5.979 19.031 0.000 0.009 0.076 0.007 0.033 15.285 109.471 0.002 1.480 2.799 11.180 0.028 6.824 24.382

Model conventions are adapted from Figure 7.

Table 2. List of the optimal parameters obtained from simulations based on models shown in Figure 7A for Monkey D

GO

GG-s (�)

GG-a GG-aDiff GS-i intGS(GGS/GSG) intGS(GGS2) GO2

�GO �GO �1 �2 �1 �2 �STOP �STOP �STOP �STOP �STOP �STOP � STOP �GO2 �GO2

8.501 26.928 0.000 0.039 0.909 0.026 0.980 20.126 20.075 0.126 0.000 13.363 0.003 0.010 6.954 17.807
10.047 37.005 0.000 0.042 0.998 0.018 0.747 50.191 64.678 0.395 0.007 1.054 0.155 0.429 6.573 21.335
7.941 47.386 0.000 0.000 0.854 0.000 0.654 67.294 300.000 79.516 800.000 60.558 231.050 0.771 7.517 46.276
10.882 54.709 0.001 0.010 0.968 0.000 0.950 74.681 300.000 15.346 122.962 49.003 0.000 1.000 10.667 77.659
7.641 41.505 0.000 0.001 1.000 0.000 1.000 68.393 207.953 74.588 690.016 80.000 0.000 0.727 8.043 28.107
15.000 45.175 0.000 0.038 0.856 0.013 0.623 73.850 20.000 0.994 0.000 9.103 0.000 0.174 10.062 20.200
8.766 39.455 0.005 0.002 0.791 0.000 0.878 75.000 266.361 78.910 0.000 70.575 113.123 0.883 10.243 31.024
7.459 69.258 0.004 0.000 0.904 0.003 0.823 66.359 300.000 88.426 278.595 80.000 0.000 0.949 16.987 55.543
6.317 48.209 0.001 0.002 0.956 0.000 0.956 75.000 272.084 79.081 632.649 31.606 226.722 0.502 8.640 33.090
9.382 51.969 0.002 0.000 0.994 0.000 1.000 75.000 298.022 92.287 0.000 80.000 150.000 0.505 11.876 25.217
7.329 100.000 0.000 0.009 0.957 0.005 0.872 34.753 270.486 76.749 667.488 80.000 0.565 0.922 17.761 36.071
1.161 88.440 0.000 0.034 0.578 0.031 0.229 42.051 284.658 60.623 562.655 12.426 13.959 0.115 13.594 37.369
13.397 47.553 0.004 0.001 0.639 0.001 0.896 75.000 298.947 76.912 0.000 80.000 142.635 1.000 11.093 18.760
9.594 62.356 0.000 0.000 0.870 0.005 0.983 66.465 300.000 80.339 171.807 72.594 273.505 0.909 12.976 21.840
11.593 27.827 0.000 0.038 0.855 0.017 0.899 38.157 20.000 0.265 0.016 27.184 4.403 0.010 6.972 15.054
10.770 36.505 0.000 0.049 0.857 0.020 0.915 30.938 20.186 0.303 0.000 32.861 0.000 0.010 6.372 17.181
6.028 58.474 0.000 0.000 0.754 0.000 0.796 75.000 299.867 86.995 800.000 80.000 300.000 0.497 8.105 23.428
8.825 17.328 0.001 0.010 0.152 0.015 0.874 2.000 258.911 0.000 3.777 0.000 297.778 0.012 7.077 15.663

Model conventions are adapted from Figure 7.
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itory interaction between the STOP unit and the GO1 unit (�GO1)
was an additional free parameter.

The parameters of the STOP process (�STOP and �STOP), the
compensation function, and the erroneous saccade reaction
times obtained by simulating the GGS model are expected to be
identical to the GSG model since the interaction between GO1 and
STOP processes is identical in these models. Therefore, GGS is
grouped with the GSG for these results (Fig. 7B,C,D, left). However,
the successful saccade reaction times (Fig. 7D, right) and the saccade
deviation profiles (Fig. 8) are separately shown. The model overesti-
mated the successful saccade RTs in the example session (t test, p �
0.05). However, these RTs were well predicted in a majority of the ses-
sions (23/43 sessions). On average, the predicted RT of the successful
saccade was overestimated by 3 ms.

For the GGS2 model, however, simulations were performed to
determine the parameters—�STOP, �STOP, and �—simultane-
ously. The predicted compensation function fit the observed
compensation function well, both in the example data (Fig. 7B;
residual variance � 0.01) and across sessions (Fig. 7C; median
residual variance � 0.007). The erroneous saccade RTs predicted
by the model in the example session were similar to the observed
RTs (t test, p 	 0.05), whereas the successful saccade RTs were
overestimated (t test, p � 0.05). However, both RTs were well
predicted in a majority of the sessions (erroneous saccade, 29/43
sessions; successful saccade, 23/43 sessions). On average, the pre-
dicted RT of the erroneous saccade was underestimated by 6 ms,
whereas that of the successful saccade was overestimated by 3 ms.

The simulated deviation profiles were plotted for the GGS and
the GGS2 models. The simulated deviation profile for the exam-
ple session (Fig. 8A) was a good match to the observed one:
residual variance was low (residual varianceGGS � 0.17; residual
varianceGGS2 � 0.13), and this trend was observed in all the ses-
sions (Fig. 8B; median residual varianceGGS � 0.17; IQRGGS �
0.10; median residual varianceGGS2 � 0.15; IQRGGS2 � 0.11).
Further, the predicted range of deviation profile (data, 0.77; GGS
model, 0.69; GGS2 model, 0.73) and the predicted crossover
times (data, 102 ms; GGS model, 128; GGS2 model, 126) were
close to the observed values. The crossover times and the range of
deviation from all sessions were plotted against their counter-
parts from the model as a scatter plot (Fig. 8C). The predicted
range correlated with the observed range across sessions (GGS:
r � 0.53; p � 0.001; GGS2: r � 0.54; p � 0.001), and the range
magnitudes were also matched (t test, p 	 0.05 for both the
models). The predicted crossover times were well correlated with
the observed times across sessions for both models (GGS: r �
0.42; p � 0.01; GGS2: r � 0.44; p � 0.01; Cronbach’s � 	 0.99 for
both models). Further, the crossover times estimated by the two
models were matched in magnitude with the observed times as
well (t test, p 	 0.5).

In summary, both the GGS and the GGS2 models performed
equally well despite the extra degree of freedom in the GGS2
model. Intuitively, this result is expected because � is essentially a
scaling factor, and if one fixes this factor, �STOP and �STOP can
potentially adjust to a different set of values to generate the same
result. This suggests that � is a redundant free parameter. To-
gether, considering the performance of the GO-GO asymmetric
models (GG-a and GG-aDiff) and the interactive GO-STOP
models (GSG, GGS, and GGS2) relative to the number of free
parameters used in each case (GG-aDiff model with six free pa-
rameters, GGS2 with five free parameters, and GG-a, GSG, and
GGS models with four free parameters), the GGS model provided
the best fit to the behavioral data and the saccade deviation profile
with the least number of free parameters. In addition, in a

session-wise analysis of the residual variance between the models
with four parameters each—GGS, GSG, and the GG-a models—
the GGS model was the best model in a majority of sessions
(19/43 sessions), and the GSG and the GG-a models were better
models in 10 of 43 and 14 of 43 sessions, respectively (Fig. 8B).

Discussion
In contrast to single-unit neurophysiology that offers correlative
evidence, microstimulation not only provides a real-time readout
of oculomotor planning but also allows one to make causal infer-
ences about the mechanisms underlying behavior. By adminis-
tering microstimulation at different times during voluntary
saccade preparation (Schiller and Sandell, 1983; Sparks and
Mays, 1983) and measuring saccade deviation profiles, the dy-
namics of spatial attention (Kustov and Robinson, 1996; Barbo-
rica and Ferrera, 2004), perceptual decision making (Gold and
Shadlen, 2000, 2003), and response selection (Juan et al., 2004)
have been studied. We have extended this approach to under-
stand the nature of computations that entail changes of mind.
More specifically, we have shown that an independent inhibitory
process that suppressed the first motor plan but allowed accumu-
lation of the second motor plan best explained the data.

In general, the effects of microstimulation appear to be largely
consistent with the accumulator models, which depict a GO-like
process rising to a threshold, that have been proposed to underlie
the neural basis of decision making (Roitman and Shadlen, 2002)
and RT (Hanes and Schall, 1996). Although the neurophysiolog-
ical implementation of a threshold remains a matter of contem-
plation (Lo and Wang, 2006; Kiani et al., 2008), it is interesting to
note that the deviation profile revealed saturation effects at lon-
ger stimulation times (Fig. 3B). While one interpretation of this
saturation effect might be a leakage-like process at work, the ad-
dition of a leakage coefficient that was determined by optimizing
fits to the no-step RT data allowed for very few saturation effects,
which proved insufficient when compared with the data. How-
ever, the observation of saturation in the deviation profile is com-
patible with the notion of an evolving motor plan representing a
dynamically specified movement vector having reached a thresh-
old level of activation, causing no further deviation of the evoked
saccade (Georgopoulos et al., 1986).

It is important to note that our model simulations, and not the
deviation profile, were optimized to fit behavior, since our ap-
proach was aimed at testing the applicability of these models to
the deviation data. One consequence of this approach, however,
was that a formal comparison between the models was not feasi-
ble. However, since the best fitting models had an equivalent
number of parameters, estimates like the residual variance, the
correlation between the predicted and observed crossover time
and that of the range of the deviation profile together, are ex-
pected to provide robust converging evidence of model perfor-
mance. In particular, we observed that the crossover time was
critical in determining a models’ ability to explain the data. The
importance of this variable derives from the analyses in Figure 5,
which showed the crossover time to be a statistically reliable and
unbiased estimate of when the decision switches. Thus, it is not
only important to fit this critical time point independent of the
overall fit (Fig. 8), but it is also important to relate this interme-
diate time point to psychologically inspired models that have
attempted to measure this variable using measures of the time
course of covert inhibition such as stop signal reaction time and
target step reaction time (TSRT) (Logan and Cowan, 1994; Ca-
malier et al., 2007). Interestingly, the crossover time was well
correlated with TSRT measures (r � 0.45, p � 0.005, n � 43
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sessions), establishing the crossover time as an overt indicator of
latent variables like the TSRT.

Although earlier studies of the classic double-step task (Becker
and Jürgens, 1979) proposed that the performance of the subjects
could be explained by assuming two independent underlying
processes (GG-i), both behavioral and modeling work (Camalier
et al., 2007; Verbruggen et al., 2008), including the current study,
have pointed to inadequacies of such a model. The addition of
symmetric mutual inhibition between the two GO processes
(GG-s model) also made little difference because in both the
models the GO1 process is always at a higher level of activation at
the time of onset of GO2 and would almost always inhibit GO2,
never allowing for a change of plan. We also simulated GO1 and
the GO2 processes using leaky accumulators instead of ideal ones.
However, allowing leakage to be a free parameter resulted in
vanishingly small values for coefficient of leakage consistent with
studies that have modeled behavioral RTs (Ratcliff and Smith,
2004; Boucher et al., 2007). More importantly, adding such a
leakage term did not allow the GO-GO models to explain the
compensation function because although leakage delays both
processes from reaching threshold it does not help facilitate GO2
over GO1, which is essential for a successful change of plan.
Therefore, even a GO-GO model with a leakage term cannot
explain the compensation function. This conclusion is in contrast
to a recent study that describes a stochastic accumulator model of
double-step saccade performance based on the premise that
when the target steps out of the movement field, activation pas-
sively decays due to leakage (Ludwig et al., 2007). Although such
GO-GO models have been able to explain traditional double-step
performance involving single targets stepping to new locations,
in our task the initial target never disappeared or stepped out of
the movement field. Thus, leakage alone, as a consequence of
passive decay, is inadequate to account for the performance and
deviation profile in our task.

The inhomogeneous mutual inhibition model (i.e., GG-a
model) in which the GO2 process inhibits GO1 in a more potent
way than vice versa could explain the performance in the redirect
task. Although the neural basis of such a mechanism is unknown,
an analogous model has been proposed to explain the perfor-
mance as well as the time course of the neural firing rate in the
countermanding task (Boucher et al., 2007). This model is a spe-
cific instance of the GGS model in which the GO2 and STOP are
treated as the same processes. However, the crossover times esti-
mated by such a model were not the best match to the data (Fig.
8C). A GO-GO model with rates of the GO2 process altered to
match the RT of the successful saccade also failed on the same
account.

The GSG architecture, which is modeled on the fixation neu-
rons of the FEF (Hanes et al., 1998) and superior colliculus (Paré
and Hanes, 2003), which are part of a nonspecific inhibitory sys-
tem, is expected to suppress the response preparation of both the
wanted (GO2) and unwanted response (GO1) agnostically. Con-
sistent with this architecture, in a recent double-step and search-
step study, the neuronal activity of movement neurons in FEF
(on average) increased their activity to the new target that stepped
into their RF almost 30 ms after the decrease in activity of move-
ment neurons when the initial target stepped from their RFs
(Murthy et al., 2009). However, in our study the GSG model was
inferior to the GGS model since it overestimated the time of
crossover of the evoked saccade deviation profile. In contrast to
the GSG model, the GGS model argues for the existence of a
selective inhibitory process and derives indirect support from
several behavioral studies (Logan and Burkell, 1986; De Jong et

al., 1995; Coxon et al., 2007; Verbruggen et al., 2008). The selec-
tive inhibition in this model provided a better description of the
data while retaining the same number of free parameters. This
suggests that an unimpeded accumulation of the GO2 process
was the key factor to obtain unbiased estimates of the crossover
time. Although the source of such selective inhibition is unclear,
the spatially specific NO-GO signals originating from neurons in the
dorsolateral prefrontal cortex (Hasegawa et al., 2004) and in the
medial frontal cortex observed during behavioral switching tasks
(Isoda and Hikosaka, 2007) are plausible neural candidates.

Although GSG and GGS models have been tested as separate
models, the two models may in fact coexist and represent differ-
ent strategies used by the brain, depending on the context. Such
flexibility might underlie the different conclusions obtained by
the earlier study (Murthy et al., 2009) and the current study.
While in the above-mentioned study the locations of the initial
and final targets were random and potentially occurred within
and across hemifields, it was predictable in the current micro-
stimulation experiments and occurred across hemifields. Such
predictability of the spatial configurations may have facilitated
the use of STOP signals that are spatially selective, allowing for a
GGS architecture. In contrast, when the locations of the targets
are random, a global STOP signal may be preferred, necessitating
a GSG architecture. A recent study in fact suggests that humans
make differential use of global versus selective stop signals to
enable inhibitory control depending on task demands (Aron and
Verbruggen, 2008).
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