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Degeneration of the dopaminergic neurons in substantia
nigra pars compacta (SNpc) and their terminals in striatum is
the pathological hallmark of Parkinson’s disease (PD), a
movement disorder that afflicts up to 1% of the growing
world population. The mechanisms underlying the selective
vulnerability of the dopaminergic neurons in SNpc are not
clearly understood. Discovery of disease-modifying therapies
that can slow down the progression of PD would require
better understanding of the cell death mechanisms that
selectively affect the dopaminergic neurons in SNpc.

One of the pathways implicated in the death of the
dopaminergic neurons of SNpc in PD is the nuclear factor
kappa B (NF-jB)-mediated transcription of pro-apoptotic
genes such as p53 (Liang et al. 2007). NF-jB is a
transcription factor that is present in the cytosol as dimer
of RelA (p65) and IjBa. Upon phosphorylation IjBa
dissociates from RelA, the p65 subunit of NF-jB and is
rapidly degraded by the proteasome. The p65 subunit of NF-
jB can then translocate to the nucleus and initiate the
transcription of genes. Several important genes involved in
the apoptotic pathway, both pro and anti-apoptotic, such as
p53 and Bcl2 are transcribed through NF-jB (de Moissac

et al. 1999; Zhang et al. 2001). Therefore, NF-jB is often
referred as a ‘double-edged sword’ that can be neuroprotec-
tive or promote neurodegeneration depending on the context
and consequence of its transactivation. Increased amounts of
nuclear p65 have been detected in SNpc of PD brains (Hunot
et al. 1997) and in animal models (Cao et al. 2008; Aoki
et al. 2009) and inhibition of NF-jB activation prevents
nuclear translocation of p65 and protects the SNpc neurons
in animals dosed with MPTP (Dehmer et al. 2004; Ghosh
et al. 2007). It has been proposed that preventing the
activation of NF-jB could be potentially considered as a
drug target for PD therapy (Li et al. 2008).

The upstream mediator(s) of NF-jB activation in PD are
not clearly understood although inflammatory responses
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Abstract

Activation and translocation of the transcription factor nuclear

factor kappa B (NF-jB) from cytoplasm to the nucleus has

been reported in models of Parkinson’s disease (PD). Our

focus was to discern the upstream events which ultimately

lead to NF-jB nuclear translocation using animal model of PD.

We demonstrate that p38 activation results in downstream

phosphorylation of NF-jB and accumulation of p65 subunit of

NF-jB selectively in ventral midbrain but not in striatum.

Treatment with p38 inhibitor, SB239063, prevented down-

stream phosphorylation of IjBa and p65 translocation to the

nucleus in the ventral midbrain. Phosphorylation of anti-

apoptotic Bcl2, an NF-jB target gene by p38 to inactive

pBcl2ser87 was also attenuated by SB239063. Increased

staining of p65 in the nuclei of cells in the substantia nigra but

not in the ventral tegmental area of MPTP-treated mice further

suggests a role for NF-jB in PD. In agreement with the above,

sustained caspase activation is seen in the ventral midbrain

but not in striatum. We demonstrate the region specific p38-

mediated activation of NF-jB following MPTP treatment

demonstrating the role of p38/NF-jB signaling in the patho-

genesis and progression of the disease. Selective inhibitors of

p38 may therefore, help preserve the surviving neurons in PD

and slow down the disease progression.
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including the production of proinflammatory cytokines such
as tumor necrosis factor (TNF)-a and interleukin-6 have been
considered as potential upstream targets (Craig et al. 2000).
However, the role of inflammatory cytokines in the patho-
genesis of PD is questionable. Several animal models of PD
including MPTP (Członkowska et al. 2002; Koprich et al.
2008) show inflammatory response including activated
microglia. Furthermore, inactivation of the genes involved
in the synthesis of proinflammatory molecules such as cyclo-
oxygenase 2 (Feng et al. 2003) and NADPH oxidase (Wu
et al. 2002) were shown to protect dopaminergic neurons
against MPTP-induced neurotoxicity indicating that inflam-
mation plays an important role in MPTP-mediated neurode-
generation. However, mice with knock-out of both TNF-a
(Ferger et al. 2004) and its receptors (Rousselet et al. 2002;
Sriram et al. 2002) failed to show attenuation of cell loss in
SNpc although the terminals in the striatum showed mod-
erate protection implying that inflammatory responses may
be more damaging in the striatal terminals. Given the
complexity of diverse cell types and signaling in vivo in the
brain, it is possible that other players such as the mitogen-
activated protein kinases (MAPKs) could participate in the
initiation of the NF-jB cascade (Wilms et al. 2003). p38
MAPK has been shown to play an important role in the
activation of NF-jB through several mechanisms involving
phosphorylation of IjBa, nuclear translocation of p65, and
interference with p65-mediated transcription in the nucleus
(Tsai et al. 2003).

We have recently shown the selective activation of p38
MAPK in the SNpc neurons of mice treated with MPTP. The
activation of p38 results in downstream phosphorylation of
p53 and increased p53-mediated transcription of Bax and
Puma. Further, treatment with p38 inhibitor, SB239063,
prevented the downstream phosphorylation of p53 and its
translocation to the nucleus in vivo in the ventral midbrain
(Karunakaran et al. 2008). In the present study we examined
the potential role of p38 as an upstream mediator of NF-jB
activation.

Materials and methods

Materials
Antibodies to IjBa (C-21, polyclonal), p38 (C-20, polyclonal, alpha

p38), Bcl2 (C-2, monoclonal), and pBcl2 (Ser 87; polyclonal) were

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA,

USA). Antibody to b-tubulin was obtained from Sigma-Aldrich (St.

Louis, MO, USA). Antibodies to p-p38 MAPK (Thr180/Tyr182),

pIjBa (Ser32), NF-jBp65, and lamin A/C were purchased from

Cell Signaling Technology, Inc. (Danvers, MA, USA). Anti-histone

H3 was obtained from Upstate Cell Signaling Solutions (Lake

placid, NY, USA). p38 inihibitor, SB239063, was obtained from

Calbiochem (Darmstadt, Germany). All other chemicals and

reagents were of analytical grade and were obtained from Sigma

Aldrich or Qualigens (Mumbai, India).

Animals
All animal experiments were carried out as per the institutional

guidelines for the use and care of animals. All efforts were made to

minimize animal suffering, to reduce the number of animals used, and

to utilize alternatives to in vivo techniques if available.Male C57BL6J

(2–3 months, 25–30 g) were obtained from Central Animal Research

Facility of National Brain Research Centre (NBRC). Male C57BL6J

mice were administered MPTP (30 mg/kg body weight/day, s.c).

Control animals received saline alone. Animals were treated with a

single dose of MPTP and killed 1, 4, 12, and 24 h later. Some animals

also received the above dose of MPTP daily for 8 days and were

killed 24 h after the last dose. Control animals received vehicle alone.

Animals had access to pelleted diet and water ad libitum. At the end of
the experimental period, mice were anesthetized with ether and

perfused transcardially with ice-cold normal saline before decapita-

tion. Ventral midbrain and striatum were dissected as described

earlier (Karunakaran et al. 2007) and frozen in liquid nitrogen

for immunoblotting. In some experiments, animals were perfused

transcardially with buffered paraformaldehyde (4%w/v) and the brain

was dissected out and processed for immunohistochemistry. For

examining the effect of p38 kinase inhibitor in vivo, mice were

divided into four groups. Two groups received the vehicle dimethyl-

sulfoxide (3% in normal saline; 100 lL) intrathecally and this was

followed by normal saline or MPTP (30 mg/kg body weight; s.c.) 1 h

later. The other two groups received SB239063 (92 lg dissolved in

100 lL of 3% dimethylsulfoxide) intrathecally prior to MPTP or

saline treatment. Mice were killed 12 h following MPTP treatment

and the ventral midbrain was dissected out.

Processing of tissue
Tissue was homogenized in 0.25 M sucrose and centrifuged at

1000 g for 10 min to obtain post-nuclear supernatant. The post-

nuclear supernatant was used for immunoblotting. In some exper-

iments the cytosol was isolated from the post-nuclear supernatant by

centrifugation at 100 000 g for 1 h. Protein concentration was

estimated by a dye-binding method (Bradford 1976). Nuclear

extracts were prepared as described (Korner et al. 1989).

Immunohistochemistry
Male C57BL6J mice were administered MPTP (30 mg/kg body

weight/day, s.c.) once daily for 1 or 8 days. Control animals received

saline. Animals were anesthetized with ether 24 h after the last

injection and perfused transcardially with phosphate-buffered saline

followed by paraformaldehyde (4% w/v) in phosphate-buffered

saline. Coronal sections (30-lm thick) were cut throughout the entire

midbrain using a cryostat. Immunostaining was visualized using

FITC-labeled secondary antibody and counter-stained with 4-6-

diamidino-2-phenylindole dihydrochloride or horseradish peroxi-

dase-labeled secondary antibody followed by stainingwithNovaRed.

Immunoblotting
The post-nuclear supernatant prepared from ventral midbrain or

striatum (20 lg protein) of vehicle and MPTP-treated mice were

resolved on 10% sodium dodecyl sulfate polyacrylamide gel. Proteins

were transferred to nitrocellulose membranes (Towbin et al. 1979),
incubated with primary antibody (1 : 1000) followed by secondary

antibody (1 : 2000) labeled with alkaline phosphatase or secondary

antibody (1 : 5000) labeled with horseradish peroxidase. Immuno-
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stained bands were detected using nitroblue tetrazolium and 5-bromo

4-chloro 3-indolyl phosphate as chromogens (Roche, Mannheim,

Germany) or using ECL kit (Amersham Pharmacia Biotech, Les Ulis,

France). Blots were normalized with b-tubulin, lamin/histone as

appropriate.

Statistical analysis
Statistical analysis of the data was performed using ANOVA or

repeated measures of ANOVA followed by post hoc tests (Student–

Newman–Keuls or Dunnet’s test). Student’s t-test or paired t-test
were used when two groups were compared. Values of p < 0.05

were taken as being statistically significant.

Results

MPTP stimulates p38 MAPK phosphorylation and nuclear
translocation in the ventral midbrain
Mitogen-activated protein kinase activation was assessed as
the ratio of the phospho-MAPK to the total MAPK signal in
each sample following normalization with b-tubulin/lamin as
described earlier (Guan et al. 2003). In the ventral midbrain
increased phosphorylation of p38 MAPK was observed 12 h
after a single dose of MPTP (Fig. 1). Phosphorylation was
2.4-fold in the extranuclear compartment (Fig. 1a) and 1.6-
fold (Fig. 1b) in the nuclear compartment.

MPTP induces NF-jB activation in the ventral midbrain not
in the striatum following MPTP treatment
We observed the phosphorylation state of IjBa following
single dose of MPTP in the ventral midbrain and striatum. In

the ventral midbrain, sustained phosphorylation of IjBa was
observed at 12 h (1.5-fold) after a single dose of MPTP
(Fig. 2a). Total lkBa levels decreased 24 h following MPTP
in the midrain and not in the striatum. Accordingly, the ratio
plkBa/lkBa increased 24 h after MPTP, which may be
caused by decreased levels of lkBa and not an absolute
increase of plkBa. However, phosphorylation state of IjBa
was not altered in the striatum (Fig. 2b). Phospho-IjBa
levels were normalized to the total IjBa level in each sample
to assess NF-jB activation. Pearson’s correlation analysis
also showed a negative correlation between the expression
levels of IjBa and pIjBa (Fig. 2c; r = )0. 961). Further, we
examined the effect of pre-treatment with SB239063, a
selective p38 inhibitor on the phosphorylation state of IjBa
following MPTP exposure. Pre-treatment with SB239063
down-regulated the levels of both total and phospho-IjBa in
the post-nuclear supernatant. Co-administration of SB239063
and MPTP attenuated the levels of pIjBa and led to the
accumulation of total IjBa in the post-nuclear supernatant
such that it was significantly higher than the control levels
(Fig. 2d).

SB239063, a p38 inhibitor, attenuates the accumulation
of NF-jBp65 in the nucleus in vivo
NF-jBp65 translocated to the nucleus as early as 4 h and
increased nuclear NF-jBp65 were seen up to 24 h post-
MPTP treatment (Fig. 3a), while the cytosolic NF-jBp65
levels decreased (Fig. 3b). However, the levels of NF-jBp65
did not alter in the striatum (Fig. 3c). We further localized
NF-jBp65 in the midbrain following subchronic exposure to

(a) (b) 

Fig. 1 MPTP-induced activation of p38 in

ventral midbrain in vivo. (a) Animals were

treated with a single dose of vehicle or

MPTP and killed 12 h later. Representative

immunoblots from ventral midbrain of ani-

mals treated with saline (C) and MPTP

(lanes, 12 h) depicting the levels of phos-

pho-p38 (pp38) and p38 in the extranuclear

(a) and nuclear compartment (b). b-Tubulin

levels were measured as loading controls.

Activation of pp38 is indicated by their

respective pp38 : p38 ratio. The increase in

ratio is expressed as fold increase with re-

spect to the control ratio (1.0). b-Tubulin or

lamin levels were measured as loading

control as appropriate. Values are

mean ± SD (n = 3 animals). Asterisks (*)

indicate values significantly different from

corresponding control (p < 0.05). Student’s

t-test was performed for a and b.
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MPTP for 8 days. Increased nuclear accumulation of NF-
jBp65 was observed in the nucleus of the surviving cell in
SNpc but not in the dopaminergic neurons of the ventral
tegmental area. Vehicle-treated animals showed sparse
staining for NF-jBp65 (Fig. 3d). Pearson’s correlation
analysis showed a high degree of positive correlation
between NF-jBp65 and its target gene Bcl2 (r = 0.986;
Fig. 3e). Co-localization of NF-jBp65 and tyrosine hydrox-
ylase in the ventral midbrain showed nuclear translocation of
NF-jBp65 in the dopaminergic neurons of SNpc (Fig. 4a)
but not in the ventral tegmental area. The nuclear translo-
cation of NF-jBp65 was not seen in the reticulata neurons.
We further studied the effect of SB239063 on the translo-
cation of NF-jBp65 to the nucleus. Surprisingly, SB239063
attenuated the accumulation of NF-jBp65 in the nuclear
compartment (Fig. 4b).

Inactivation of Bcl2 following MPTP is abolished by p38
inhibitor, SB239063, in ventral midbrain
Activation and nuclear translocation of NF-jB is known to
induce the synthesis of anti-apoptotic proteins such as Bcl2.
We observed that MPTP caused small but significant up-
regulation of total Bcl2 at 4 h which was sustained up to 24 h
after a single dose of MPTP in the ventral midbrain (Fig. 5a).

Phosphorylation of Bcl2 at Ser87 by p38 MAPK (De Chiara
et al. 2006) resulted in loss of its anti-apoptotic function. We
observed increase in the phosphorylated Bcl2 (Ser87) levels
12 to 24 h after MPTP indicating the loss of its anti-apoptotic
activity. Pre-treatment with SB239063, the p38 inhibitor, not
only prevented the increase in pBcl2 but also resulted in
down-regulation of the increase in total Bcl2 levels seen after
MPTP. This presumably indicates that the p38 inhibitor
prevented both the activation of NF-jB and the phosphor-
ylation of Bcl2 (Fig. 5c). The level of Bcl2 was not altered in
the striatum following MPTP treatment (Fig. 5b). Further,
caspase 3 (p17) was also activated in a sustained manner in
the midbrain but not in the striatum following single dose of
MPTP (Fig. 5d). Pearson’s correlation analysis showed a
high degree of positive correlation between the levels of
pBcl2Ser87, active caspase 3, and pp38 (Fig. 5e).

Discussion

In the present study we demonstrate that phosphorylation of
p38 MAPK is an important event upstream of NF-jB
activation. Inhibitors of p38 MAPK effectively abolished
phosphorylation of IjBa and nuclear translocation of the
RelA-p65 subunit of NF-jB thus preventing the transactiva-

(a) (b) (d)

(c)

Fig. 2 MPTP-induced activation of NF-jB in the ventral midbrain but

not striatum. Animals were treated with a single dose of vehicle or

MPTP and killed 1, 4, 12, and 24 h later. Representative immunoblots

from ventral midbrain (a) and striatum (b) of animals treated with saline

(c) and MPTP (lanes 1, 4, 12, and 24 h) depicting the levels of pIjBa

and IjBa. Densitometric analyses of the immunoblots representing the

relative intensity of the immunoreactive bands from midbrain and

striatum are (n = 3) shown. They are represented as solid line (____)

for pIjBa, while IjBa is depicted as dotted line (……). (c) Pearson’s

correlation analysis showed negative correlation between the

expression levels of pIjBa and IjBa in the ventral midbrain. (d) Ani-

mals were treated with a single dose of vehicle [3% dimethylsulfoxide

(DMSO)] or MPTP and killed 12 h later. Some animals also received a

single dose of SB239063 intrathecally. Representative blots from

ventral midbrain of animals treated with DMSO (lane 1), MPTP (lane

2), SB239063 (lane 3), and SB239063 + MPTP (lane 4) depicting the

protein levels of phospho-IjBa and IjBa in the extranuclear com-

partment. b-Tubulin levels were measured as loading control. Activa-

tion of NF-jB is indicated by their respective pIjBa : IjBa ratio. The

increase in ratio is expressed as fold increase with respect to the

control ratio (1.0). Values are mean ± SD (n = 3 animals). Asterisks

(*) indicate values significantly different from corresponding control

(p < 0.05). Repeated measures of ANOVA followed by Dunnet’s test

were performed for a, b, and d.
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tion mediated by NF-jB. p38 MAPK can potentially impact
on NF-jB pathway through several mechanisms as shown in
in vitro studies using cultured cells (Baeza-Raja and Muñoz-
Cánoves 2004). For example, p38 is known to phosphorylate
IjBa leading to its dissociation from the p65 subunit thus
facilitating the translocation of p65 to the nucleus (Calleros
et al. 2006). Phosphorylated IjBa was rapidly degraded by
the proteasome (Finco and Baldwin 1995). In our study,
treatment of mice with p38 inhibitor inhibited the phosphor-
ylation of pIjBa (Fig. 2d) and importantly in the presence of

MPTP, the levels of IjBa increased significantly over
controls indicating that the non-phosphorylated form of the
protein was rapidly accumulating in the cell. SB239063
alone induced a decrease in basal plkBa levels. When
SB239063 was given with MPTP it attenuated the increase in
plkBa seen with MPTP alone. However, this decrease could
also be because of the primary effect of the p38 inhibitor on
plkBa levels per se. This may suggest that although p38
inhibitor is able to decrease the phosphorylated form of lkBa
in basal condition, it may have nominal action on the

(a) (b) 

(c) 

(e) 

(d) 

Fig. 3 NF-jBp65 translocates to the nucleus following MPTP treat-

ment in vivo. Animals were treated with a single dose of vehicle or

MPTP and killed 1, 4, 12, and 24 h later. Representative immunoblots

from ventral midbrain (a) of animals treated with saline (C) and MPTP

(lanes 1, 4, 12, and 24 h) depicting the levels of NF-jBp65 in the

nuclear compartment. Lamin levels were measured as loading control.

(b) Animals were treated with a single dose of vehicle or MPTP and

killed 12 h later. The level of NF-jBp65 is decreased specifically in the

cytosolic fraction. The blot was normalized with GAPDH for cytosol. (c)

Representative blot from striatum of animals depicting the total NF-

jBp65. (d) Animals were treated with a daily dose of MPTP for 8 days

and killed on the ninth day. Immunohistochemical localization of NF-

jBp65 revealed the accumulation of NF-jBp65 in the nucleus of

surviving substantia nigra pars compacta (SNpc) neurons (first row).

The magnified images of SNpc (second row) show that NF-jBp65 is

not present in the nucleus of control animals, while it is present in the

nucleus in the surviving neurons after subchronic exposure to MPTP

for 8 days. NF-jBp65 is not activated in the neurons of the ventral

tegmental area (VTA) following MPTP (third row). Scale Bar = 25 lm.

Scale bar represents 10 lm for the magnified images. Values are

mean ± SD (n = 3 animals). Asterisks indicate values significantly

different from corresponding control (p < 0.05). Repeated measures of

ANOVA followed by Dunnet’s test were performed for a. While Student’s

t-test was carried out for b and c. (e) Pearson’s correlation analysis

showed high degree of correlation between the expression levels of

NF-jBp65 and Bcl2. GAPDH, glyceraldehyde-3-phosphate dehydro-

genase.
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phosphorylation of lkBa because of MPTP, which could
presumably occur through other mechanisms. However, the
co-treatment of MPTP and SB239063 increased the level of
total lkBa clearly indicating its accumulation in the cell
because of the fact that only the phosphorylated form was
degraded by proteasome.

The TNF receptor (TNFR) superfamily also includes other
prominent receptors like Fas and p75 nerve growth factor
receptor among others. Upon activation, the TNFRs interact
with an array of intracellular adaptor proteins to mediate
downstream cell signaling. Particularly, TNFR1 and TNFR2
associate with TNFR-associated factors, which mediate
activation of the NF-jB family of transcription factors.
TNFR-associated factor 2 mediates NF-jB activation via
NF-jB inducing kinase, which leads to IjB degradation and
release of NF-jB (Pomerantz and Baltimore 1999).

It therefore, appears that p38 impacts the NF-jB pathway
at the initiation of the cascade that is the phosphorylation of
IjBa facilitating the dissociation and translocation of the p65
subunit. Further, p38 is also known to phosphorylate the p65
subunit of NF-jB and this could also be a potential

mechanism of action (Olson et al. 2007). We would like to
add that while these mechanisms have been identified in
cultured cells, very few studies have examined these
pathways, in vivo. Thus we demonstrate for the first time
that p38 MAPK is involved in NF-jB activation, in vivo, in
the SNpc in animal model of PD.

We studied early events in MPTP toxicity by examining
the signaling cascades following a single dose of MPTP. This
strategy helped us to identify primary mechanisms underly-
ing the neurotoxicity and we then examined if these
responses were sustained after chronic administration of
MPTP for 8 days. Thus we found that the NF-jBp65 levels
were enhanced in the nuclear compartment of the ventral
midbrain 4 h after a single dose of MPTP and this was
sustained for up to 24 h. No such effect was seen in the
striatum (Fig. 3c). Further, mice treated with MPTP for
8 days or a single dose for 24 h showed higher levels of p65
in the nucleus of cells in SNpc but not in the reticulata as
seen by immunohistochemistry (Figs. 3d and 4a).

Activation of NF-jB can either enhance neuroprotection
or promote neurodegeneration (Dehmer et al. 2004). For

(a)

(b)

Fig. 4 MPTP-mediated translocation of NF-jBp65 to the nucleus

is abolished by p38 inhibitor SB239063 in vivo in mice. Animals

were treated with a single dose of MPTP and killed 24 h later. (a)

Immunohistochemical co-localization revealed the presence of

NF-jBp65 (arrowhead; green) in the nucleus of tyrosine hydroxylase

(TH)-positive neurons of the SNpc (red) but not in the neurons of

ventral tegmental area (VTA) or reticulata neurons (SNR). Scale Bar:

10 lm. (b) Animals were treated with a single dose of vehicle [3%

dimethylsulfoxide (DMSO)] or MPTP and killed 12 h later. Some

animals also received a single dose of SB239063 intrathecally. Rep-

resentative blots from ventral midbrain of animals treated with DMSO

(lane 1), MPTP (lane 2), SB239063 (lane 3), and SB239063 + MPTP

(lane 4) depicting the protein levels of NF-jBp65 in the nuclear com-

partment. Histone levels were measured as loading control. Values

are mean ± SD (n = 3 animals). Asterisks (*) indicate values signifi-

cantly different from corresponding control (p < 0.05). Repeated

measures of ANOVA followed by Dunnet’s test were performed for b.

DAPI, 4-6-diamidino-2-phenylindole dihydrochloride.
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example, Bcl2, the anti-apoptotic molecule and p53 the
pro-apoptotic gene are transcribed through NF-jB. Previ-
ous studies have shown that p53 expression is increased
following MPTP treatment (Karunakaran et al. 2008) and
inhibition (Duan et al. 2002) or knock down (Trimmer
et al. 1996) of p53 affords neuroprotection. In the present
study we show that Bcl2 expression is increased in the
ventral midbrain (Fig. 5a) but not in striatum where NF-jB
activation does not occur (Fig. 5b). However, the anti-
apoptotic effects of Bcl2 were negated by its phosphory-
lation by p38 MAPK (Fig. 5c). Phosphorylation of Bcl2 by
p38 to pBcl2ser87 resulted in decrease of the anti-apoptotic
potential, and pBcl2 is an important player in the initiation
of the apoptotic signaling cascade (De Chiara et al. 2006)

including release of cytochrome c and caspase activation.
Thus, the present study also points out an important role of
p38 in pro-apoptotic signaling through phosphorylation of
Bcl2. The activation of p38 promotes neurodegeneration
through multiple mechanisms involving phosphorylation of
p53 and Bcl2 and activation of NF-jB (Fig. 6b). Thus
activation of p38 MAPK can potentially play a pro-survival
role by enhancing the expression of genes such as Bcl2
through NF-jB activation while at the same time it
inactivates Bcl2 by phosphorylating it at Ser87. Thus,
inhibition of p38 MAPK could potentially lead to both
enhanced neuroprotection/neurodegeneration as it impacts
both cell survival and cell death cascade. The impact of
p38 on these pathways needs to be assessed independently

(a) (b)

(c)

(d)

(e)

Fig. 5 Phosphorylation at Ser87 by p38MAPK inactivates anti-apop-

totic Bcl2. (a) Animals were treated with a single dose of vehicle or

MPTP and killed 1, 4, 12, and 24 h later. Representative immunoblots

from ventral midbrain of animals treated with saline (C) and MPTP

(lanes 1, 4, 12, and 24 h) depicting the levels of phospho-Bcl2 (pBcl2)

and Bcl2. (b) Representative blots from striatum of animals treated

with saline (C) and MPTP (12 and 24 h) depicting the protein levels of

phospho-Bcl2 and Bcl2 in the extranuclear compartment. (c) Animals

were treated with a single dose of vehicle [3% dimethylsulfoxide

(DMSO)] or MPTP and killed 12 h later. Some animals also received a

single dose of SB239063 intrathecally. Representative blots from

ventral midbrain of animals treated with DMSO (lane 1), MPTP (lane

2), SB239063 (lane 3), and SB239063 + MPTP (lane 4) depicting the

protein levels of phospho-Bcl2 and Bcl2 in the extranuclear compart-

ment. (d) Representative blots from ventral midbrain and striatum

depicting the protein levels of active caspase 3 (p17) and procaspase

3 in the extranuclear compartment. b-Tubulin levels were measured as

loading control. Values are mean ± SD (n = 3 animals). Asterisks (*)

indicate values significantly different from corresponding control

(p < 0.05). Repeated measures of ANOVA followed by Dunnet’s test

were performed for a, b, and c. (e) Pearson’s correlation analysis

showed high degree of correlation between the expression levels of

pp38, pBcl2Ser87, and active caspase 3.
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to determine which of these is influenced most by p38
MAPK.

It is interesting to note that activation of p38 (Fig. 1),
phosphorylation of IjBa, and nuclear translocation of p65
(Figs. 2 and 3) is seen only in the ventral midbrain but not in
the striatum indicating a central role for p38 activation. In
agreement with the above, the caspase activation is also
limited to the ventral midbrain and not striatum (Fig. 5d).

Nuclear factor jB activation has been implicated to be
downstream to the inflammatory reaction seen in animal

models of PD and autopsy tissue from PD patients (Mogi
et al. 2007). It is yet to be demonstrated if the inflammatory
response is the cause or effect of the neurodegenerative
process. The knock down of TNF-a and its receptors have
failed to afford neuroprotection in mice and this argues
against the role of inflammation as primary mediator of the
degenerative process. In our model, we observed the
activation of microglia (Karunakaran et al. 2008) but were
unable to detect substantial increase in levels of cytokines
such as TNF-a and interleukin-6 in the midbrain at early
time periods after a single dose of MPTP (data not
shown)~although sustained activation of MAPK was seen
(Karunakaran et al. 2008). This observation shows that the
inflammatory response are unlikely to be the triggering event
and that activation of MAPK occurring possibly downstream
of redox perturbation may be the one of the initiators of the
death signaling cascade(s).

In conclusion, our studies demonstrate that activation of
p38 is upstream of the activation of NF-jB driven
transcription which can potentially promote neurodegenera-
tion. Thus, inhibition of p38 MAPK offers an attractive target
for drug discovery. The cross-talk between p38, NF-jB, and
Bcl2 pathways demonstrated in the present study also
pointed out the involvement of multiple pathways and
redundancy that existed in the complex milieu, in vivo, in the
mammalian brain, which presumably was far more intricate
in the human brain in disease states. Therefore, disease-
modifying therapies in humans may need to target multiple
pathways through combinatorial approaches.
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