[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Mukherjee, S and Akbar, I and Kumari, B and Vrati, S and Basu, A and Banerjee, A (2019) Japanese Encephalitis Virus-Induced Let-7a/B Interacted with the Notch-Tlr7 Pathway in Microglia and Facilitated Neuronal Death Via Caspase Activation. Journal of Neurochemistry, 149 (4).

Full text not available from this repository. (Request a copy)

Abstract

MicroRNAs (miRNAs) released from the activated microglia upon neurotropic virus infection may exacerbate the neuronal damage. Here, we identified let-7a and let-7b (let-7a/b) as one of the essential miRNAs over-expressed upon Japanese Encephalitis virus (JEV) infection and released in the culture supernatant of the JEV-infected microglial cells through extracellular vesicles. The let-7a/b was previously reported to modulate inflammation in microglial cells through Toll-like receptor 7 (TLR7) pathways; although their role in accelerating JEV pathogenesis remain unexplored. Therefore, we studied the role of let-7a/b in modulating microglia-mediated inflammation during JEV infection and investigated the effect of let-7a/b-containing exosomes on primary neurons. To this end, we examined let-7a/b and NOTCH signaling pathway in TLR7 knockdown (KD) mice. We observed that TLR7 KD or inhibition of let-7a/b suppressed the JEV-induced NOTCH activation possibly via NF-κB dependent manner and subsequently, attenuated JEV-induced TNFα production in microglial cells. Furthermore, exosomes secreted from let-7a/b over-expressed microglia when transferred to uninfected mice brain induced caspase activation. Exosomes secreted from virus-infected or let-7a/b over-expressed microglia when co-incubated with mouse neuronal (Neuro2a) cells or primary cortical neurons also facilitated caspase activation leading to neuronal death. Thus, our results provide evidence for the multifaceted role of let-7a/b miRNAs in JEV pathogenesis. Let-7a/b can interact with TLR7 and NOTCH signaling pathway and enhance TNFα release from microglia. On the other hand, the exosomes secreted by JEV-infected microglia can activate caspases in uninfected neuronal cells which possibly contribute to bystander neuronal death. Cover Image for this issue: doi: 10.1111/jnc.14506.

Item Type: Article
Subjects: Neurodegenerative Disorders
Neuro-Oncological Disorders
Neurocognitive Processes
Neuronal Development and Regeneration
Informatics and Imaging
Genetics and Molecular Biology
Depositing User: Dr. D.D. Lal
Date Deposited: 17 Jun 2019 09:29
Last Modified: 17 Jun 2019 09:29
URI: http://nbrc.sciencecentral.in/id/eprint/503

Actions (login required)

View Item View Item