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A dynamic network of metabolic adaptations, inflammatory
responses, and redox homeostasis is known to drive tumor pro-
gression. A considerable overlap among these processes exists,
but several of their key regulators remain unknown. To this end,
here we investigated the role of the proinflammatory cytokine
IL-1� in connecting these processes in glioma cells. We found
that glucose starvation sensitizes glioma cells to IL-1�–induced
apoptosis in a manner that depended on reactive oxygen species
(ROS). Although IL-1�–induced JNK had no effect on cell via-
bility under glucose deprivation, it mediated nuclear transloca-
tion of hexokinase 2 (HK2). This event was accompanied by
increases in the levels of sirtuin 6 (SIRT6), nuclear factor
erythroid 2–related factor 2 (Nrf2), and xanthine oxidoreduc-
tase (XOR). SIRT6 not only induced ROS-mediated cell death
but also facilitated nuclear Nrf2–HK2 interaction. Recruitment
of the Nrf2–HK2 complex to the ARE site on XOR promoter
regulated its expression. Importantly, HK2 served as transcrip-
tional coactivator of Nrf2 to regulate XOR expression, indicated
by decreased XOR levels in siRNA-mediated Nrf2 and HK2
knockdown experiments. Our results highlight a non-metabolic
role of HK2 as transcriptional coactivator of Nrf2 to regulate
XOR expression under conditions of proinflammatory and met-
abolic stresses. Our insights also underscore the importance of
nuclear activities of HK2 in the regulation of genes involved in
redox homeostasis.

Emerging data indicate that interplay between inflammation
and metabolism plays a critical role in tumor progression. In
addition to their ability to extensively metabolize glucose for
aiding increased energy demands, cancer cells are also under
oxidative stress associated with increased production of ROS2

(1). The rapid glycolytic rate in glioblastoma (2) is concomitant

with elevated levels of hexokinase 2 (HK2), which catalyzes the
first step of the glycolytic pathway (3). Although HK1 is the
predominant isoform in low-grade gliomas, highly up-regu-
lated HK2 levels in glioblastoma multiforme correlates with
poor prognosis (3). The subcellular localization of HK2 is sen-
sitive to extracellular glucose with the distribution of HK2
between cytoplasm and mitochondria dynamically being regu-
lated by glucose availability (4). HK2 regulates ROS levels (5),
and glucose withdrawal increases ROS production in glioma
cells (6). Also, the ability of diverse chemotherapeutic agents to
induce glioma cell apoptosis through increased intracellular
ROS generation is known (7–9).

Nuclear factor erythroid 2–related factor 2 (Nrf2) is a redox-
sensitive transcription factor that provides cytoprotection
against oxidative stress. Oxidative stress mediates activation of
Nrf2 (10), which is known to regulate ROS production by mito-
chondria and NADPH oxidase (11). In addition to contributing
toward the maintenance of redox homeostasis, Nrf2 affects the
expression of metabolic genes (12, 13). Interestingly, SIRT6 not
only regulates redox homeostasis by serving as an Nrf2 coacti-
vator (14) but also affects glucose homeostasis via HIF-1� (15).
Nrf2 regulates HIF-1� accumulation (16), and HIF-1� serves as
a regulator of HK2 (17). Moreover, IL-1�–induced HK2 in gli-
oma is dependent on the relative abundance of HIF-1�– depen-
dent SIRT6 levels (18). Furthermore, HIF-1�– dependent sub-
cellular localization of HK2 regulates cytoskeletal organization
to consequently affect MHC-I clustering under inflammatory
conditions in glioma cells (19).

Disrupting glycolytic flux serves as a trigger for inflammation
and cell death (20). Interestingly, glycolytic inhibitors and
metabolic conditions that affect hexokinase function and local-
ization induce inflammasome activation involved in IL-1�
secretion (21). Xanthine oxidoreductase (XOR), involved in
catalyzing purines to uric acid, regulates IL-1� secretion upon
NLRP3 inflammasome activation (22). Moreover, XOR is also
known to regulate HIF-1� through ROS in glioma cells (23).
Given that inflammation rewires energy metabolism in the
tumor microenvironment (24), the prospect of targeting altered
metabolism in inflammation has been suggested to have sub-
stantial therapeutic promise (25). As there is a link among
inflammation, metabolic status, and redox homeostasis, we
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investigated the effect of inflammation and glucose deprivation
on oxidative stress in glioma cells.

Results

Increased death upon glucose deprivation in IL-1�–treated
glioma cells is ROS-dependent

Although treatment with IL-1� or glucose deprivation alone
had no effect on glioma cell viability, IL-1� triggered a signifi-
cant decrease in cell viability under low-glucose conditions
within 3 h (Fig. 1A). Death was accompanied by alteration in the
expression of molecules associated with cell cycle progression
(Fig. S1A) and an increase in cytochrome c and Bcl2 levels (Fig.
S1B). Cancer cells exhibit glucose metabolism– dependent
inhibition of cytochrome c–mediated apoptosis (26), and glu-
cose deprivation promotes ROS generation and death (6). An

increase in ROS generation was observed in glucose-deprived
cells treated with IL-1� as compared with those exposed to
low-glucose condition (Fig. 1B). As an elevated ROS level
induces glioma cell apoptosis upon inhibition of glucose metab-
olism (7), we evaluated the role of elevated ROS in affecting
glioma cell viability. The ability of ROS inhibitor N-acetyl-L-
cysteine (NAC) to rescue glucose-deprived cells from IL-1�–
induced death suggested that apoptosis triggered by IL-1�
under glucose starvation is ROS-mediated (Fig. 1C). However,
pretreatment of cells with PEGylated catalase (an H2O2-de-
composing enzyme) was unable to rescue death, indicating
that H2O2 is not the major ROS species contributing to cell
death (Fig. S1C). This was concomitant with no change in
H2O2 levels in cells treated with IL-1� under glucose depri-
vation (Fig. S1D).

Figure 1. Glucose starvation sensitizes glioma cells to IL-1�–induced apoptosis in a ROS-dependent manner. A, IL-1� induces glioma cell death under
glucose deprivation. B, increase in DHE fluorescence intensity depicting heightened ROS generation in glucose-deprived IL-1�–treated cells. C, increase in
absorbance representing rescue of cell death by the ROS inhibitor NAC. D, Western blots demonstrating increased pJNK levels in glioma cells treated with IL-1�
in the absence of glucose. E, MTS assay showing JNK-independent cell death. The inset shows the efficacy of JNK inhibitor. The graphs represent scatter plots
with each data point representing average absorbance values depicting glioma cell viability (A, C, and E) and average fluorescence intensities depicting ROS
levels (B). �G denotes glucose-free DMEM. SP600125 is a JNK inhibitor. One-way ANOVA (Bonferroni’s multiple comparison test) was used for statistical
analysis. Error bars represent S.E. (n � 4 in A, C, and E; n � 3 in B). ***, p � 0.001.
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IL-1�–induced death upon glucose deprivation is
JNK-independent

We have previously demonstrated the importance of ROS-
induced JNK activation in triggering glioma cell apoptosis (7).
On investigating the status of JNK in IL-1�–treated glioma cells
in the presence and absence of glucose, an increase in JNK phos-
phorylation was observed only in cells treated with IL-1� in the
absence of glucose (Fig. 1D). However, JNK inhibitor SP600125
failed to rescue death in cells treated with IL-1� under condi-
tions of glucose deprivation (Fig. 1E), suggesting non-involve-
ment of JNK in the process. The induction of cell death in both
U87MG (p53 wildtype) and T98G (p53 mutant) cell lines in
response to inflammation and glucose deprivation suggested
that induction of death under this condition is independent of
p53 status.

Increased SIRT6 expression regulates cell death

In addition to its function as a regulator of ROS generation
(27), SIRT6 also plays a dominant role in affecting energy bal-
ance through control of glucose homeostasis (15). In addition,
IL-1� increases SIRT6 levels in glioma cells (18). An increase in
SIRT6 levels was observed upon IL-1� treatment under glucose
deprivation (Fig. 2A). On evaluating the contribution of ele-
vated SIRT6 levels to IL-1�–induced death under glucose-de-
prived condition, viability of cells upon SIRT6 overexpression
and depletion was determined. Although siRNA-mediated
SIRT6 knockdown increased viability of IL-1�–treated cells
under glucose deprivation (Fig. 2B), ectopic SIRT6 expression
increased cell death (Fig. 2C). Given the known function of
SIRT6 as a regulator of ROS generation (27) and the ability of
SIRT6 to affect viability of IL-1�–treated glucose-deprived
cells, ROS levels upon SIRT6 knockdown as well as overexpres-
sion were investigated. A decrease in ROS levels upon SIRT6
knockdown (Fig. 2D) and an increase upon ectopic SIRT6
expression (Fig. 2E) were observed. The increase in ROS levels
was concomitant with a decrease in the expression of mito-
chondrial superoxide dismutase (SOD2), a critical detoxifier of
mitochondrial ROS (Fig. 2F). This decrease in SOD2 levels in
glucose-deprived cells treated with IL-1� was further dimin-
ished upon SIRT6 overexpression (Fig. 2F).

IL-1� increases nuclear localization of HK2 upon glucose
deprivation

Inhibiting HK2 activity by 2-deoxyglucose, which competi-
tively inhibits cellular uptake and utilization of glucose,
increases its nuclear localization (28). Because both JNK (7) and
SIRT6 (18) regulate HK2 expression in glioma cells, we investi-
gated the status of HK2 in IL-1�–treated glucose-deprived cells
expressing elevated pJNK and SIRT6 levels. Western blot anal-
ysis revealed a decrease in cytosolic (Fig. 3A) and an increase in
nuclear (Fig. 3B) HK2 levels in IL-1�–treated cells upon glucose
deprivation. SIRT6 enhances the expression of proinflamma-
tory cyto-/chemokines (29), and HK2 dissociation from mito-
chondria triggers NLRP3 inflammasome activation and IL-1�
production (21). On investigating the status of NLRP3 and
IL-1� in cells exhibiting heightened SIRT6 and nuclear HK2
levels, an increase in the mRNA expression of both was
observed upon glucose deprivation only in the presence of

IL-1� (Fig. 3C). As we have previously reported JNK-dependent
regulation of HK2 in glioma cells (7) and because JNK activa-
tion was dramatically elevated under conditions of increased
nuclear HK2 translocation, the role of JNK in this shuttling was
investigated. The IL-1�–induced increase in nuclear HK2
localization upon glucose deprivation was JNK-dependent as
SP600125 prevented IL-1�–mediated HK2 accumulation in
the nucleus under this condition (Fig. 3, D and E).

HK2 has no role in cell death but negatively regulates HIF-1�
activation

HK2 determines cellular fate by affecting both cytoprotec-
tion and apoptosis induction based on the metabolic state (30).
To investigate the involvement of altered HK2 localization in
affecting cell death, the viability of cells upon siRNA-mediated
HK2 knockdown was determined. HK2 knockdown failed to
rescue cell death (Fig. S2A), suggesting the non-involvement of
HK2 in IL-1�–triggered cell death under glucose starvation.
Although HK2 induces apoptosis upon glucose depletion, it is
also known to protect cells from death during hypoxia (30).
Given the non-involvement of HK2 in death induction, we
investigated whether its inability to rescue death could have
stemmed from changes in HIF-1� levels. Interestingly, HK2
knockdown further heightened HIF-1� activation in IL-1�–
treated cells deprived of glucose (Fig. S2B). This further con-
firmed our previous observation that a negative correlation
exists between HK2 and HIF-1� levels in glioma cells (18).

SIRT6 regulates Nrf2

SIRT6 regulates oxidative stress responses by serving as an
Nrf2 coactivator (14), and Nrf2 accumulation in cancer cells
offers protection against oxidative stress (31). Importantly,
Nrf2 is translocated to the nucleus in response to pro-oxidant
stimuli (32). On determining Nrf2 levels in glucose-deprived
IL-1�–treated cells exhibiting heightened ROS, an increase in
nuclear Nrf2 levels was observed (Fig. 4A). As the increased
nuclear Nrf2 level was concomitant with elevated SIRT6 levels,
the role of SIRT6 in regulating Nrf2 levels was investigated. The
ability of siRNA-mediated SIRT6 knockdown to decrease the
nuclear Nrf2 level in glucose-deprived IL-1�–treated cells (Fig.
4B) further indicated the role of SIRT6 as a regulator of Nrf2.

HK2 interacts with Nrf2 in a SIRT6-dependent manner

As the increased nuclear Nrf2 level was concomitant with
increased nuclear HK2 accumulation, we investigated the as-
sociation between the two. Immunoprecipitation revealed
increased association between Nrf2 and HK2 under glucose-
deprived conditions only in the presence of IL-1� (Fig. 4C).
Moreover, not only did siRNA-mediated SIRT6 knockdown
decrease the nuclear Nrf2 level in glucose-deprived IL-1�–
treated cells, but it also abrogated Nrf2–HK2 interaction (Fig.
4C). These results provide strong evidence that Nrf2 is an inter-
acting partner of HK2 and that SIRT6 is crucial in facilitating
the interaction.

XOR is a target of HK2 and Nrf2

Nuclear translocation of Nrf2 in response to oxidative stress
triggers a transcriptional program through its binding to the
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antioxidant response element (ARE) of antioxidant genes asso-
ciated with maintenance of cellular redox balance (33). HK2
serves as an intracellular glucose sensor of yeast cells to affect
gene regulation (34) whereby it functions through a variety of
structurally unrelated factors to sustain transcriptional repres-
sion at the SUC2 gene (34). In addition, dissociation of HK2
from mitochondria activates the NLRP3 inflammasome (21),
and XOR-dependent IL-1� secretion upon NLRP3 inflam-
masome activation has been shown (21). Given the involvement
of XOR in regulating cellular redox homeostasis through ROS
generation (23), the status of XOR in glucose-deprived IL-1�–
treated cells was determined. An increase in XOR expression
was observed in IL-1�–treated glucose-deprived cells, which
also exhibited elevated ROS, IL-1�, and NLRP3 levels, as
compared with cells treated with IL-1� or glucose-deprived
medium alone (Fig. 5A). This increase was accompanied by
elevated XOR mRNA levels (Fig. S2E) as well as increased
enzyme activity (Fig. S2C). As Nrf2 was found to interact with
HK2, the role of HK2 and Nrf2 in regulating XOR expression
was determined. The increase in XOR expression was found to
be dependent on both HK2 and Nrf2 as siRNA-mediated
knockdown of Nrf2 (Fig. 5B) and HK2 (Fig. 5C) decreased
IL-1�–induced XOR expression under glucose deprivation.
Also, RNA polymerase II was found to be part of this nuclear
Nrf2–HK2 complex (Fig. S2D).

To investigate whether other known targets of Nrf2 require
HK2 in their regulation, the expression of known Nrf2 target
heme oxygenase 1 (HMOX1) (35) was determined under HK2
knockdown condition in cells treated with IL-1� under glucose
deprivation. Although siRNA-mediated knockdown of HK2
abrogated the IL-1�– and glucose deprivation stress–induced
increase in XOR mRNA levels, HK2 had no effect on HMOX1
expression (Fig. S2E). Thus, the ability of HK2–Nrf2 complex to
regulate Nrf2-dependent genes was found to be target-specific,
and not all Nrf2 target genes follow HK2-dependent regulation.

Nrf2 knockdown abolishes binding of HK2–Nrf2 complex to
ARE site on XOR promoter

Several studies have reported nuclear shuttling of HK2 (34,
36), and in the context of SUC2 promoter HK2 functions as a
transcriptional repressor (34). In view of our observations that
XOR expression is regulated by both Nrf2 and HK2, the effect
of occupancy of Nrf2–HK2 complex at the ARE site of XOR
promoter on its expression was investigated. A chromatin
immunoprecipitation (ChIP) assay revealed increased enrich-
ment of Nrf2 (Fig. 5D) as well as HK2 (Fig. 5E) on the ARE site
of XOR promoter in glucose-deprived IL-1�–treated cells. This

raises the possibility that HK2 could directly bind DNA or may
bind to ARE through its interaction with Nrf2. However,
enhanced binding of HK2 in glucose-deprived IL-1�–treated
cells was abrogated upon Nrf2 knockdown (Fig. 5F). Taken
together, the results suggest that abundantly available nuclear
HK2 in glucose-deprived IL-1�–treated cells serves as a coacti-
vator of Nrf2 in XOR transcriptional regulation by facilitating
increased binding of HK2–Nrf2 complex to the ARE site on
XOR promoter (Fig. 5G).

Discussion

Non-canonical functions of glycolytic enzymes in gene reg-
ulation are just beginning to be understood with nuclear shut-
tling of such enzymes being involved in the regulation of tran-
scriptional events in glioma (38). Several studies have reported
nuclear shuttling of HK2 in yeast as well as in cancer cells (28,
36, 39, 40) with nuclear localization of HK2 being regulated by
glucose (39). Although the presence of glucose reduces HK2
nuclear translocation (28), glucose deprivation in itself was not
sufficient to affect nuclear HK2 translocation in glioma cells.
An inflammatory stimulus is necessary for prompting HK2
cytoplasmic–nuclear shuttle under glucose-deprived condi-
tions. As IL-1� is known to induce a prolonged hypoglycemia in
the brain (42), it is possible that the nuclear HK2 level becomes
pronounced under glucose deprivation only in the presence of
IL-1�. Although HK2 had no involvement in cell death, it
served as a negative regulator of HIF-1�. This is of interest as
HIF-1�– dependent subcellular localization of HK2 is known to
regulate inflammation-mediated cytoskeletal organization that
influences immune-related outcome (19).

Importantly, SIRT6 served as a negative regulator of cell
death under metabolically compromised inflammatory condi-
tions. This ability of SIRT6 to affect death could be attributed to
its ability to regulate ROS levels (27). As HIF-1�– dependent
SIRT6 abundance regulates HK2 levels in IL-1�–treated glioma
cells (18), this study underscores SIRT6’s role as a crucial factor
in the orchestration of redox-regulatory responses under
inflammatory conditions. In addition to regulating cell death,
SIRT6-dependent nuclear Nrf2 accumulation and subsequent
formation of Nrf2–HK2 complex were found to be indispens-
able for XOR expression. Disruption of glycolytic flux–
mediated induction of mitochondrial ROS accumulation (43,
44) as well as dissociation of hexokinase from mitochondria is
known to activate the NLRP3 inflammasome (21). As XOR
inhibition attenuates NLRP3 inflammasome activation by
impairing IL-1� secretion (22), it is possible that increased
XOR is crucial for regulating inflammatory cell responses under

Figure 2. SIRT6 affects cell viability through regulation of redox homeostasis. A, Western blot demonstrating SIRT6 levels in IL-1�–treated glioma cells in
the presence or absence of glucose. Blots are representative images of three independent experiments showing similar results. Blots were reprobed for �-actin
to establish equivalent loading. Densitometry data depicting -fold change in SIRT6 expression over control under the indicated treatment conditions normal-
ized to corresponding loading controls are shown. siRNA-mediated knockdown of SIRT6 increases (B) and SIRT6 overexpression decreases (C) viability of glioma
cells deprived of glucose and treated with IL-1� as determined by MTS assay. Insets in B and C show knockdown efficiency of SIRT6 siRNA and increased SIRT6
expression upon transfection with SIRT6 overexpression construct. D and E, DHE fluorescence intensity showing that ROS generation in glucose-deprived
IL-1�–treated cells is SIRT6-dependent. F, SIRT6 regulates SOD2 expression under a combination of inflammatory and metabolic stresses. Densitometry data
depict -fold change in SOD2 expression over control under the indicated treatment conditions normalized to corresponding loading controls. Each data point
in the scatter plots represents average absorbance values depicting glioma cell viability (n � 4) (B and C) and fluorescence values depicting ROS levels under
the indicated treatment conditions from independent experiments (n � 3) (D and E). �G denotes glucose-free DMEM. NSsiRNA, nonspecific siRNA; SIRT6OE,
SIRT6 overexpression. Two-tailed paired Student’s t test (B and C) and one-way ANOVA (Bonferroni’s multiple comparison test) (A, D, E, and F) were used for
statistical analysis. Error bars represent S.E. *, p � 0.05; **, p � 0.01; ***, p � 0.001; ns, not significant.
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diminished glycolytic flux. Our findings indicate that inhibiting
glucose flux alone is not sufficient to induce apoptosis in the
absence of an inflammatory trigger. It is the unique state of a cell
exhibiting limited glycolytic flux, inflammation, and oxidative
stress that sets the stage for SIRT6-mediated death.

Compared with the relatively well known metabolic func-
tions of HK2 in tumor progression, the present study highlights
a previously unknown non-metabolic role of HK2 in regulating
transcription of genes associated with redox regulation by serv-
ing as a coactivator of Nrf2. Although the nuclear translocation
of HK2 and its ability to serve as a coactivator of Nrf2 are a
prerequisite for facilitating transcription of XOR, the expres-

sion of the Nrf2 target HMOX1 was found to be independent of
HK2. Thus, Nrf2–HK2 complex appears to be specific for reg-
ulation of XOR and is not a general feature for regulating other
known Nrf2 targets. However, it is possible that the coactivator
function of HK2 may not be limited only to transactivation of
Nrf2. It will therefore be interesting to identify other HK2-
binding partners to reveal the non-canonical function of HK2
in a broad range of cellular functions. As there is considerable
overlap between metabolic and inflammatory responses in gli-
oma cells, understanding mechanisms through which meta-
bolic genes subserve non-canonical functions to affect growth
in metabolically stressed inflammatory conditions atypical of

Figure 3. IL-1� induces JNK-dependent nuclear localization of HK2. Shown are Western blots demonstrating cytosolic (A) and nuclear (B) HK2 levels in
glioma cells treated with IL-1� in the presence or absence of glucose. C, qRT-PCR analysis shows increased IL-1� and NLRP3 mRNA levels in cells treated with
IL-1� under glucose deprivation. Each data point in the scatter plots represents -fold change with respect to glucose-free DMEM (�G) from independent
experiments (n � 4). D, Western blot demonstrating nuclear HK2 levels in cells treated with or without IL-1� or SP600125 in the presence or absence of glucose.
Western blots are representative images of three independent experiments showing similar results. Blots were reprobed for �-actin or c23 to establish
equivalent loading. E, JNK regulates nuclear localization of HK2. Immunofluorescence microscopy revealed nuclear HK2 localization in glucose-deprived cells
in the presence of IL-1�. Treatment with JNK inhibitor (SP600125) prevented HK2 localization to the nucleus. Cells were immunostained with anti-HK2 (HK2;
red). The nucleus is marked with DAPI (blue). Merged images (Merge) are shown. Representative images of 63� magnification from three independent
experiments are shown for the indicated conditions. SP denotes JNK inhibitor (SP600125). Adjacent line profiles show mean fluorescence intensities of HK2 and
DAPI measured by ZEN lite 2.3 software (scale bars, 10 �m). Error bars represent S.E. *, p � 0.05.

Figure 4. SIRT6 regulates Nrf2–HK2 association. A, Western blot depicting elevated nuclear Nrf2 expression in IL-1�–treated glioma cells under glucose
starvation. B, siRNA-mediated knockdown of SIRT6 prevents nuclear Nrf2 accumulation in cells treated with IL-1� under glucose starvation as demonstrated by
Western blot analysis. Blots were reprobed for c23 to establish equivalent loading. C, SIRT6 positively regulates nuclear HK2–Nrf2 interaction in the presence of IL-1�
in glucose-starved glioma cells. Coimmunoprecipitation shows decreased HK2–Nrf2 association in IL-1�–treated glucose-deprived cells upon siRNA-mediated knock-
down of SIRT6. A confounding effect of unequal precipitation on the interaction studies was ruled out by almost equal IgG levels in each condition. Blots are
representative images of three independent experiments showing similar results. NSsiRNA, nonspecific siRNA; IP, immunoprecipitation; IB, immunoblotting.
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the tumor microenvironment would provide new insights into
glioma biology.

Materials and methods

Cell culture and treatment

Glioblastoma cell lines A172, U87MG, and T98G obtained
from American Type Culture Collection (Manassas, VA) were
cultured in DMEM (Life Technologies) supplemented with
10% FBS (Gibco, Life Technologies). On attaining semiconflu-
ence, cells were switched to serum-free medium, and after 6 h
cells were glucose-starved in glucose-free DMEM (Life Tech-
nologies) in the presence or absence of 10 ng/ml IL-1� (R&D
Systems). Treatment with the ROS inhibitor NAC (2.5 mM),
JNK inhibitor SP600125 (10 �M), and H2O2-decomposing
enzyme PEGylated catalase (20 �M) was performed according
to experimental requirements.

Determination of cell viability

The viability of cells treated with IL-1� in the presence or
absence of glucose-free DMEM was assessed using the MTS
assay (Promega, Madison, WI) as described (8). Similarly, the
viability of cells treated with the ROS inhibitor NAC or H2O2
inhibitor PEGylated catalase or transfected with HK2 siRNA,
SIRT6 siRNA, or SIRT6 overexpression construct and treated
with IL-1� in the presence or absence of glucose was deter-
mined. Values were expressed as average absorbance of techni-
cal replicates for every treatment condition.

Measurement of ROS

Intracellular ROS generation in cells treated with IL-1� in
the presence and absence of glucose and ROS inhibitor or upon
siRNA-mediated SIRT6 knockdown as well as SIRT6 overex-
pression was assessed using fluorescent dye dihydroethidium
(DHE) as described previously (8). Briefly, cells were stained
with 1 �M DHE in serum-free medium for 45 min at 37 °C and
then washed twice with 1� PBS. Fluorescence intensity was
measured at 535-nm wavelength using an Infinite M200PRO
(Tecan) microplate plate reader.

Measurement of hydrogen peroxide

The AmplexTM Red Hydrogen Peroxide/Peroxidase Assay
was used to determine the relative levels of H2O2 in cells
deprived of glucose in the presence or absence of IL-1�. Briefly,
cells were collected in 1� reaction buffer, and 50 �l of Amplex
Red/HRP working solution was added to the 50-�l cell suspen-
sion according to the manufacturer’s instructions. The samples
were incubated in the dark at room temperature for 30 min in a

black 96-well plate. Fluorescence intensity was measured at an
excitation wavelength of 530 nm and an emission wavelength of
590 nm using an Infinite M200PRO microplate plate reader.

Western blot analysis

Western blot analysis was performed on protein lysates iso-
lated from control cells or cells treated with IL-1� in the pres-
ence or absence of glucose and/or transfected with different
constructs or siRNAs as described previously (37) using anti-
bodies against Nrf2 (catalog number ab31163), SIRT6 (catalog
number ab62739), p27 (catalog number ab32034), SOD2 (cat-
alog number ab13533) (Abcam), pJNK (catalog number 4668),
JNK (catalog number 9252), HK2 (catalog number 2867) (Cell
Signaling Technology), RNA polymerase II (catalog number
39097) (Active Motif), p21 (catalog number 05-345) (Upstate),
cyclin E (catalog number sc247), cyclin A (catalog number
sc239), Bcl2 (catalog number sc7382), cytochrome c (catalog
number sc13560), and XOR (catalog number sc20991) (Santa
Cruz Biotechnology). Secondary antibodies were purchased
from Vector Laboratories Inc. (Burlingame, CA). The blots
were stripped and reprobed with anti-�-actin (catalog number
A3854) (Sigma), anti-�-tubulin (catalog number sc9104), or
anti-c23 (catalog number sc55486) (Santa Cruz Biotechnology)
to determine equivalent loading (41). Images were photo-
graphed using ECL (Millipore) on a Syngene G:Box system
(Cambridge, UK) using Gene-Sys software.

Transfection

5 � 103 cells were seeded in 96-well plates, and 2 h prior to
transfection cell medium was replaced with Opti-MEM (Gibco,
Life Technologies). Transfection with 70 nM duplex HK2, 50 nM

SIRT6, and Nrf2 or nonspecific siRNA (Thermo Fischer Scien-
tific) was carried out using Lipofectamine RNAiMAX reagent
(Life Technologies-Invitrogen) as described previously (37).
Similarly, transfection with either 10 ng of Renilla luciferase
expression vector (pRL-TK) or 0.3 �g of HIF-1� luciferase con-
struct was performed using Lipofectamine 2000 (Life Technol-
ogies), and luciferase activity was measured using the Dual-
Luciferase assay kit according to the manufacturer’s protocol
(Promega) using a GloMax 96 microplate luminometer (Pro-
mega) as described previously (37).

Confocal microscopy

For immunofluorescence staining, cells were grown in a
4-well chamber glass slide system (Nunc Lab-Tek) and treated
with JNK inhibitor (SP600125) before depriving cells of glucose
and treating with IL-1�. After washing with 1� PBS, the cells

Figure 5. HK2 serves as a coactivator of Nrf2 in regulating XOR expression. A, IL-1� increases XOR levels under conditions of glucose deprivation.
siRNA-mediated knockdown of either Nrf2 (B) or HK2 (C) prevents IL-1�–induced XOR expression in glucose-deprived cells as depicted by Western blot analysis.
Insets show knockdown efficiency of Nrf2 and HK2 siRNAs. Western blot images are representation of three independent experiments showing similar results.
Blots were reprobed for �-actin to establish equivalent loading. Densitometry data of -fold change in XOR expression over control under different treatment
conditions normalized to corresponding loading controls are shown. Each data point in the scatter plot denotes -fold change with respect to control from
independent experiments (n � 3). D and E, ChIP performed on the region containing the ARE site on XOR promoter in T98G and U87MG glioma cells indicates
increased Nrf2 and HK2 binding at the ARE site in IL-1�–treated glucose-deprived cells. F, ChIP assay depicting decreased HK2 binding at XOR promoter upon
siRNA-mediated Nrf2 knockdown in IL-1�–treated glucose-deprived cells. Diluted input (5%) was used as a positive control. Relative enrichment was calculated
with respect to control levels after correction for background signals. Graphs are representative data of three independent experiments. �G denotes glucose-
deprived DMEM. One-way ANOVA (Bonferroni’s multiple comparison test) was used for statistical analysis. Error bars represent S.E. *, p � 0.05; **, p � 0.01; ***,
p � 0.001. G, schematic depiction of the importance of HK2 as a coactivator of Nrf2 in regulation of XOR under inflammatory and metabolic stresses. NSsiRNA,
nonspecific siRNA; qPCR, quantitative PCR.
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were fixed in 4% paraformaldehyde for 20 min and subse-
quently permeabilized by 0.1% Triton-X and 0.1% BSA in 1�
PBS for 10 min at room temperature. Cells were blocked with
2% BSA and 3% normal donkey serum in 1� PBS, incubated
with anti-HK2 antibody at a dilution of 1:500, washed three
times with 1� PBS, and incubated with Alexa Fluor 594 –
conjugated anti-rabbit antiserum (Invitrogen catalog number
21207) at a dilution of 1:500 for 1 h at room temperature.
Mounting was done with DAPI, and the slides were visualized
using a spinning disk confocal microscope (Zeiss Observer.Z1).
Multiple images were taken from different fields at 63� mag-
nification. Image analysis was carried using ZEN lite 2.3 (Carl
Zeiss) software to generate a line profile of the mean fluores-
cence intensity.

Coimmunoprecipitation

Endogenous HK2 was immunoprecipitated with anti-HK2
antibody from nuclear extracts obtained from treated and/or
transfected cells. Briefly, nuclear lysates were incubated with 3
�g of the indicated antibody for 16 h and subsequently incu-
bated for 4 h with a mixture of protein G/A-Sepharose beads
(GE Healthcare). The immunoprecipitated samples were
resolved by 8 –10% SDS-PAGE after washing the beads five
times in immunoprecipitation buffer. 10% input was also
resolved. Western blot analysis was performed with the immu-
noprecipitates and inputs with specific antibodies.

Xanthine oxidoreductase activity assay

The Amplex Red Xanthine/Xanthine Oxidase Assay kit
(Thermo Fisher catalog number a22182) was used for detecting
xanthine oxidase activity in the cell lysates according to the
manufacturer’s instructions.

ChIP and ChIP-qPCR assay

ChIP was performed by enzymatic DNA shearing (ChIP-IT
Enzymatic kit, Active Motif) to investigate Nrf2 binding on the
ARE site (�593 to �582 bp) of XOR promoter as described
previously (37). Cells were deprived of glucose in the presence
or absence of IL-1� for 2– 4 h and fixed in 1% formaldehyde at
room temperature for 8 min. Isolated nuclei were lysed and
then enzymatically sheared with the enzymatic shearing kit
(Active Motif). Antibodies against Nrf2 or HK2 were used
for immunoprecipitation. Following reverse cross-linking and
DNA purification, DNA from input (1:10 diluted) or immuno-
precipitated samples were assayed by qRT-PCR. The primers
spanning the ARE site on XOR promoter were as follows: XOR
ChIP primer forward, 5�-TTTACAAGGCACTCCCAAAA-3�;
and reverse, 5�-TGAACCTGACTCAAATCCTG-3�.

Quantitative real-time PCR

To analyze mRNA levels of different genes in cells treated
with IL-1� in the presence or absence of glucose or HK2 knock-
down, real-time PCR was performed as described previously
(13) using a ViiA7 Real Time thermocycler (Applied Biosys-
tems Inc.), and results were plotted as -fold change over control.
All samples were normalized with their respective 18S rRNA Ct
values. qRT-PCR primers used are listed in Table 1.

Statistical analysis

All comparisons between groups were performed either by
two-tailed paired Student’s t test or one-way ANOVA (Bonfer-
roni’s multiple comparison test) for multiple comparisons
between more than two groups. All p values less than 0.05 were
taken as significant.
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