[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Faiq, MA and Kumar, A and Singh, HN and Pareek, V and Kumar, P (2018) Commentary: A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE) Consensus Sequence Repeats in the Viral Genome. Front Microbiol, 9 (190).

[img] Text
Commentary A Possible.pdf
Restricted to Repository staff only

Download (209Kb) | Request a copy

Abstract

The present commentary emerges from the skepticism about our recent paper describing/proposing the mechanism of Zika-virus (a positive strand RNA virus) mediated microcephaly (Kumar et al., 2016). Our hypothesis mainly elaborates on the retinoic acid signaling problems precipitated by Zika infection. Owing to our intriguing bioinformatics results, we commenced with a coherent line of arguments that viral DNA (somehow synthesized from the viral RNA) may be integrating into the host DNA, and if the inserted DNA sequences match the regulatory regions of certain host genes then their expression signature may be altered. It could then be justified that the Retinoic Acid Response Element (RARE) consensus sequence repeats (if present) in the genomic sequences of ZIKV strains would be inserted into the regulatory regions of RARE dependent genes of the host DNA and, therefore, could influence their expression in a way that the developing fetus manifests with brain malformation like microcephaly. Another reason for implicating RARE elements in Zika induced microcephaly is because retinoic acid metabolism has an imperatively essential role in normal brain development, and the reported cases of Zika virus mediated microcephaly demonstrated striking resemblances to retinoic acid embryopathy (Kumar et al., 2016; Mawson, 2016). The most plausible explanation that could account for all the features of Zika microcephaly was through retinoic acid signaling. All this was the substance of our paper published last year (Kumar et al., 2016) which necessitates the possibility of integration of a positive strand RNA virus genome into the host genome (POSTRAITE: POsitive STrand RnA Integration to hosT gEnome) as a starting premise. We will, therefore, be discussing this possibility as a central idea in the present commentary. Also, it has come to our notice that some investigators may have concerns regarding the premise of POSTRAITE because positive strand RNA viruses neither have a reverse transcriptase nor an integrase. To lay this doubt to rest, here we provide a cogent rationale about how our premise is coherent and how there is a possibility for positive strand RNA viruses to integrate into the host genome.

Item Type: Article
Subjects: Neurodegenerative Disorders
Neuro-Oncological Disorders
Neurocognitive Processes
Neuronal Development and Regeneration
Informatics and Imaging
Genetics and Molecular Biology
Depositing User: Dr. D.D. Lal
Date Deposited: 10 Aug 2018 06:17
Last Modified: 10 Aug 2018 06:17
URI: http://nbrc.sciencecentral.in/id/eprint/424

Actions (login required)

View Item View Item