[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Datta, Siddhartha and Chakraborty, Sumit and Mulpuru, Sai Krishna and Tiwary, Basant K and Chakrabarti, Nilkanta and Roy, Prasun K (2015) MRI characteristics of temporal lobe epilepsy using rapidly-measurable spatial indices with hemispheric asymmetry and gender features. Neuroradiology, 57 (9). pp. 873-886.

[img] Text
60_MRI characteristics of temporal lobe epilepsy using rapidly-measurable spatial indices with hemispheric asymmetry and gender feature.pdf
Restricted to Registered users only

Download (181Kb)

Abstract

NTRODUCTION: The paucity of morphometric markers for hemispheric asymmetries and gender variations in hippocampi and amygdalae in temporal lobe epilepsy (TLE) calls for better characterization of TLE by finding more useful prognostic MRI parameter(s). METHODS: T1-weighted MRI (3 T) morphometry using multiple parameters of hippocampus-parahippocampus (angular and linear measures, volumetry) and amygdalae (volumetry) including their hemispheric asymmetry indices (AI) were evaluated in both genders. The cutoff values of parameters were statistically estimated from measurements of healthy subjects to characterize TLE (57 patients, 55% male) alterations. RESULTS: TLE had differential categories with hippocampal atrophy, parahippocampal angle (PHA) acuteness, and several other parametric changes. Bilateral TLE categories were much more prevalent compared to unilateral TLE categories. Female patients were considerably more disposed to bilateral TLE categories than male patients. Male patients displayed diverse categories of unilateral abnormalities. Few patients (both genders) had combined bilateral appearances of hippocampal atrophy, amygdala atrophy, PHA acuteness, and increase in hippocampal angle (HA) where medial distance ratio (MDR) varied among genders. TLE had gender-specific and hemispheric dominant alterations in AI of parameters. Maximum magnitude of parametric changes in TLE includes (a) AI increase in HA of both genders, (b) HA increase (bilateral) in female patients, and (c) increase in ratio of amygdale/hippocampal volume (unilateral, right hemispheric), and AI decrease in MDR, in male patients. CONCLUSION: Multiparametric MRI studies of hippocampus and amygdalae, including their hemispheric asymmetry, underscore better characterization of TLE. Rapidly measurable single-slice parameters (HA, PHA, MDR) can readily delineate TLE in a time-constrained clinical setting, which contrasts with customary three-dimensional hippocampal volumetry that requires many slice computation.

Item Type: Article
Subjects: Neurodegenerative Disorders
Neuro-Oncological Disorders
Neurocognitive Processes
Neuronal Development and Regeneration
Informatics and Imaging
Genetics and Molecular Biology
Depositing User: Dr. D.D. Lal
Date Deposited: 13 Jul 2017 08:47
Last Modified: 21 Feb 2022 07:20
URI: http://nbrc.sciencecentral.in/id/eprint/232

Actions (login required)

View Item View Item