[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Srivastava, P and Mahapatra, SK and Ghosh, A and Srivastava, I and Dhingra, NK (2015) Differential alterations in the expression of neurotransmitter receptors in inner retina following loss of photoreceptors in rd1 mouse. PLoS One, 10 (4). 0123896.

103_Differential alterations in the expression of neurotransmitter receptors in inner retina following loss of photoreceptors in rd1 mouse.pdf

Download (639Kb) | Preview


Loss of photoreceptors leads to significant remodeling in inner retina of rd1 mouse, a widely used model of retinal degeneration. Several morphological and physiological alterations occur in the second- and third-order retinal neurons. Synaptic activity in the excitatory bipolar cells and the predominantly inhibitory amacrine cells is enhanced. Retinal ganglion cells (RGCs) exhibit hyperactivity and aberrant spiking pattern, which adversely affects the quality of signals they can carry to the brain. To further understand the pathophysiology of retinal degeneration, and how it may lead to aberrant spiking in RGCs, we asked how loss of photoreceptors affects some of the neurotransmitter receptors in rd1 mouse. Using Western blotting, we measured the levels of several neurotransmitter receptors in adult rd1 mouse retina. We found significantly higher levels of AMPA, glycine and GABAa receptors, but lower levels of GABAc receptors in rd1 mouse than in wild-type. Since GABAa receptor is expressed in several retinal layers, we employed quantitative immunohistochemistry to measure GABAa receptor levels in specific retinal layers. We found that the levels of GABAa receptors in inner plexiform layer of wild-type and rd1 mice were similar, whereas those in outer plexiform layer and inner nuclear layer combined were higher in rd1 mouse. Specifically, we found that the number of GABAa-immunoreactive somas in the inner nuclear layer of rd1 mouse retina was significantly higher than in wild-type. These findings provide further insights into neurochemical remodeling in the inner retina of rd1 mouse, and how it might lead to oscillatory activity in RGCs.

Item Type: Article
Subjects: Neurodegenerative Disorders
Neuro-Oncological Disorders
Neurocognitive Processes
Neuronal Development and Regeneration
Informatics and Imaging
Genetics and Molecular Biology
Depositing User: Dr. D.D. Lal
Date Deposited: 11 Jul 2017 10:47
Last Modified: 13 Mar 2020 05:27
URI: http://nbrc.sciencecentral.in/id/eprint/197

Actions (login required)

View Item View Item