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Gopal A, Viswanathan P, Murthy A. A common stochastic
accumulator with effector-dependent noise can explain eye-hand co-
ordination. J Neurophysiol 113: 2033–2048, 2015. First published
January 7, 2015; doi:10.1152/jn.00802.2014.—The computational ar-
chitecture that enables the flexible coupling between otherwise inde-
pendent eye and hand effector systems is not understood. By using a
drift diffusion framework, in which variability of the reaction time
(RT) distribution scales with mean RT, we tested the ability of a
common stochastic accumulator to explain eye-hand coordination.
Using a combination of behavior, computational modeling and elec-
tromyography, we show how a single stochastic accumulator to
threshold, followed by noisy effector-dependent delays, explains eye-
hand RT distributions and their correlation, while an alternate inde-
pendent, interactive eye and hand accumulator model does not.
Interestingly, the common accumulator model did not explain the RT
distributions of the same subjects when they made eye and hand
movements in isolation. Taken together, these data suggest that a
dedicated circuit underlies coordinated eye-hand planning.
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ALTHOUGH STOCHASTIC ACCUMULATION of information has pro-
vided a general framework to explain behavior in a multitude
of reaction time (RT) tasks for a variety of effectors in isolation
(Carpenter and Williams 1995; Ratcliff 1978; Ratcliff and Van
Dongen 2011; Reddi et al. 2003), its ability to explain the RTs
of combined eye-hand movements has surprisingly received
scant attention. In a recent study, Dean et al. (2011) examined
how cross coupling between otherwise independent eye and
hand accumulators can explain correlations between the RTs of
eye and hand when engaged in a coordinated motor behavior.
In contrast, the common motor command model (Biguer et al.
1982; Bizzi et al. 1971; Bock 1987), which hypothesizes that
eye and hand movements are planned and initiated by a
common signal, has been an influential framework that has
motivated numerous experiments to understand the mecha-
nisms involved in eye-hand coordination (Bekkering et al.
1994; Fisk and Goodale 1985; Mather and Fisk 1985; Sailer et
al. 2000). In concurrence with the common command model,
numerous studies have shown the presence of high correlations
between eye and hand RTs in a variety of tasks involving
eye-hand movements in humans as well as nonhuman primates
(Herman et al. 1981; Rogal et al. 1985). This evidence not-
withstanding, a number of studies (Gielen et al. 1984; Mather
and Fisk 1985) have shown modest eye-hand RT correlations.
More importantly, the common command model has not been

subject to quantitative assessment, and hence the nature and
extent of effector-independent (common) and effector-depen-
dent representations underlying eye-hand coordination remain
unspecified. Here, we attempt a critical step toward this direc-
tion by testing and predicting the ability of a single common
accumulator model to explain eye-hand RTs and their correla-
tions.

MATERIALS AND METHODS

We recorded 24 normal subjects (23 right handed, 1 left handed, 20
men and 4 women), between 25 and 28 yr of age with normal or
corrected-to-normal vision in 3 different tasks involving visually-
guided pointing. All subjects gave their informed consent in accor-
dance with the institutional human ethics committee, which reviewed
and approved the experimental protocol. Subjects were monetarily
rewarded for their participation in the study.

For the initial 8 subjects (experiment 1) we used a redirect task,
which is a modified version of a double-step paradigm, with an
implicit countermanding signal incorporated in it (Ramakrishnan et al.
2010; Ray et al. 2004). Two types of trials were randomly interleaved.
No-step trials (60%) began when a white fixation target appeared at
the center of the screen and subjects were instructed to fixate and point
with their index finger to it. When subjects maintained fixation and held
the pointing finger steady, for a fixation period of 300 � 100 ms (accurate
to the screen refresh rate of 60 Hz), a peripheral green target appeared,
either to the right or left of the fixation target, at an eccentricity of 12°.
Subjects were instructed to make a saccade and point, as quickly and
accurately as possible, to the green target (Fig. 1A).

During the remaining 40% of the trials, known as step trials, the green
target was followed by a yellow target that appeared in the opposite
hemifield (180°) with the same eccentricity (12°). On these trials, the
yellow target served as a redirect cue, instructing the subjects to
inhibit their intended response (pointing and saccade) to the initial
target and to execute a new response to the final target, instead. Target
step delay (TSD), the time between the appearances of the final target
relative to that of the initial target, was varied randomly from trial to
trial. Step trials, however, are not the subject of the present paper.

Trial Conditions

Subjects were recorded on the redirect task with three different
conditions during separate sessions.

Eye-alone. During the eye-alone condition subjects were instructed
to perform the task with saccades, while their pointing finger was
positioned at fixation. A trial was aborted when the pointing finger left
the fixation box during the trial. Six hundred trials were recorded per
subject under the eye-alone condition with six TSDs ranging from
34–284 ms, accurate to the nearest integer refresh rate, in steps of
�50 ms.

Hand-alone. During the hand-alone condition subjects were in-
structed to perform the task with their hand while they maintained
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their gaze at fixation. A trial was aborted when the eye left the fixation
box along with the hand during the trial. Seven hundred trials were
recorded per subject under the hand-alone condition with seven TSDs
ranging from 134–734 ms, accurate to the nearest integer refresh rate,
in steps of �100 ms.

Eye-hand. During the eye-hand condition subjects were instructed
to perform the redirect task with both their eyes and the hands
together. In step trials only those trials in which both the eye and the
pointing finger satisfied the redirect condition were considered suc-
cessful. One thousand trials were recorded per subject under the
eye-hand condition with 10 TSDs. The values of TSDs used in the
eye-hand condition were a combination of those used in the eye-alone
and hand-alone conditions.

To ensure that the presence of step trials had no bearing on the
no-step analyses, we recorded an additional 12 subjects in an

eye-hand task with only no-step trials (experiment 2). We also
recorded the EMG from the shoulder muscle (anterior deltoid)
while these subjects performed the no-step task. To assess within-
subject variability, we tested 4 subjects in a second session and
found their EMG onsets to be significantly different from the first
session. Hence we treated the second session as an independent
observation to obtain a total of 16 sessions with eye-hand and
concurrent EMG data. In addition, four separate subjects were
recorded while they performed no-step trials in the hand-alone
condition along with simultaneous recording of their EMG (exper-
iment 3).

Trials were scored as successful if subjects fixated the target within
�5°. This was determined online by means of an electronic window
centered on the target. Auditory feedback was given to the subjects on
all successful trials.

Fig. 1. The task. A: in the eye-alone, hand-alone and eye-hand conditions, subjects were instructed to make a saccade, pointing movement, or both, respectively,
to targets that could appear 12° on either side of the fixation box. B: temporal sequence of events in a typical no-step trial. The top panel shows the sequence
of stimuli the subject viewed. The middle and bottom panels show successive eye and hand positions, respectively. The start and the end of the saccade are marked
by the pink and the cyan lines, respectively, and that of the hand movement, by the green and the black lines, respectively. C: schematic of the experimental
setup.
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Setup for Data Acquisition

The experiment was under the control of TEMPO/VDOSYNC
software (Reflective Computing), which displayed visual stimuli and
recorded data at a temporal resolution of 1 ms. Eye movements were
monitored by a noninvasive video-based pupil tracker (ISCAN) at a
sampling frequency of 240 Hz, which interfaced with TEMPO in real
time with a delay of 8 ms. Hand movements were tracked by an
electromagnetic tracker (LIBERTY, Polhemus) that read the move-
ment of a sensor in a magnetic field created by a source at a sampling
frequency of 240 Hz. The hand tracker was also interfaced with
TEMPO in real time with a delay of 8 ms � 1 ms. EMG activity from
the anterior deltoid muscle of the performing hand was recorded in
differential mode using 10-mm gold cup electrodes (Care Fusion).
The recording electrode was placed on the belly of the anterior deltoid
muscle, the reference electrode at the point of insertion of the same
muscle at the shoulder, and the ground electrode was placed on the
elbow away from the recording site. Signals were band passed
between 10 and 250 Hz, notch filtered at 50 Hz, amplified (Blackrock
Microsystems), and digitized in TEMPO with a temporal resolution of
1 ms.

Stimuli were presented on a CRT monitor (Sony SGI, 21-in., 60-Hz
refresh rate) or an LCD monitor (Dell, 20-in., 60-Hz refresh rate). A
plane mirror (25% transmission, 75% reflectance) was placed below
the monitor at an angle, to reflect the monitor display. An acrylic sheet
was kept in the same plane as that of the virtual image of the monitor,
on which subjects performed the pointing movement. The sheet
constrained the movement of the hand in one plane. This virtual
reality setup (Fig. 1C; adapted from the laboratory of Dr. Neggers,
Univ. Of Utrecht) was preferred to minimize the distortion caused by
the electrostatic and electromagnetic fields of the CRT monitor on the
electromagnetic tracker and facilitate eye tracking simultaneously.

Recording Procedure

Subjects were comfortably seated in a position to foveate and point
at the virtual image of the monitor formed by the mirror. A sensor was
strapped with Velcro on the pointing finger to track hand position,
along with a battery-powered LED for visual feedback. Head move-
ments were minimized by clamping the chin, forehead and temple.
Subjects were recorded on different trial conditions, on separate days,
in separate blocks. At the beginning of each session subjects were
given written and verbal instructions, followed by some practice trials
(�50) before the data were collected. On average, subjects performed
about 500 trials per session, with breaks after every 250 trials. A
typical session lasted about 1 h, and a subject had to perform five to
eight sessions to complete the dataset. Calibrations were performed by
having subjects point and fixate at the two target positions.

Analysis

All analyses and statistical testing were done offline using MAT-
LAB (Mathworks). Blinks were detected using velocity thresholds
(�800°/s) and verified manually. The trials with blink perturbed
saccades were removed from further analysis. Custom programs were
written in MATLAB to detect saccadic and hand movements from the
raw data containing instantaneous X and Y positions of both effectors.
A velocity threshold of 30°/s was used to mark the beginning and end
of a saccade, while a threshold 10 cm/s was used to mark the start and
end of a pointing movement. To detect the onset of EMG activity, the
raw EMG signal was rectified and smoothed using a boxcar filter with
a temporal window of 20 ms duration. The time at which the
poststimulus EMG activity increased by more than 5 standard devi-
ations from the baseline activity was considered the EMG onset. The
digitized eye and hand traces along with the detected onsets and
offsets in a typical trial are shown in Fig. 1B. Although RT distribu-
tions of individual subjects are skewed, the distribution of mean RTs

across the population are normal, as assessed by a Lilliefors test. Thus,
means and SDs were typically reported and used for statistical
analyses performed in MATLAB. Unless indicated otherwise, statis-
tical significance was tested using either one- or two-tailed t-tests,
where appropriate.

Modeling RT Distributions

We modeled the behavior of subjects in no-step trials using a
diffusion type accumulator model of movement initiation (Ratcliff
and Van Dongen 2011; Usher and McClelland 2001). The model
comprises a GO process that instantiates the accumulation of activity
to threshold responsible for movement initiation. The GO process
accumulates noisy sensory evidence after a visual delay of 60 ms. This
accumulation is thought to represent preparatory activity build-up
toward a threshold that initiates movement (Schall and Hanes 1998).
The level of accumulation at each time step is governed by a
stochastic equation given below:

aGO�t� � aGO�t � 1� � �GO � �GO (1)

where, aGO represents GO unit activation at time t; the mean GO or
drift rate is given by �G0, which represents the mean strength of the
sensory signal; � is the Gaussian noise term with mean of 0 and
standard deviation of �, which represents noise in the sensory signal.
The rate of accumulation was modeled as ideal (without leak) and
stochastic across each time step of 1 ms. Such a drift diffusion process
produces a stochastic trajectory of preparatory activity that reaches
threshold at different time points for different trials, resulting in a
distribution of RTs. Using numerical simulations, we verified that the
mean and the SD of the resultant RT distributions were monotonically
related (Wagenmakers et al. 2005).

To estimate these parameters (�GO and �GO), we used Monte Carlo
simulations. We simulated 2,000 no-step trials in each iteration by
randomly selecting values for �GO and �GO, separately for each
subject. We used the Kolmogorov-Smirnov (KS) statistic to compare
the simulated and observed no-step cumulative RT distributions.
Convergence was decided based on parameter values that minimized
the KS statistic between the simulated and observed data (Reddi and
Carpenter 2000). Minimization was carried out using MATLAB’s
fmincon, a nonlinear minimization function, which ran 1,000 such
iterations. Convergence occurred on a typical run within 20 iterations.
We repeated this procedure 100 times, with different sets of random
initial starting conditions that tiled the parameter space typically
observed for generating RT distributions before choosing the best set
of parameters. The set of parameters that resulted in the smallest value
of the KS statistic was chosen as the optimal solution. The whole
procedure was repeated to ensure the reliability of the estimated
parameters. The � and � parameters estimated separately for the eye
and hand effectors, based on their respective RT distributions, con-
stituted the free parameters for all the models.

To test whether our Monte Carlo simulations provided us with the
best estimates of the underlying distribution, we performed different
benchmarking tests. An RT distribution with 10,000 trials was simu-
lated with known parameters of �GO and �GO. We verified that the
Monte Carlo method converged to the same values, given only the RT
distribution. We also tested a brute force method in which the entire
parameter space was assessed and found convergence to the same
value reported by the Monte Carlo simulation. Although local minima
were also detected, the error between the predicted and the observed
RT associated with these parameters in the local minima was higher.
Thus the criterion of choosing the parameters associated with the least
error values as the best fit parameters ensured that simulations con-
verged to the best solution.
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The Common Command Model

To test the common command hypothesis, we implemented the
model in MATLAB and simulated 2,000 trials. We assumed that a
common accumulator, representing both eye and hand movement
preparation, could be modeled using the eye RT data as a proxy of the
central command. The hand RT distribution was simulated in a similar
fashion as described above, using the best fit eye parameters (�GO and
�GO), after incorporating either a delay (delay model) or higher
threshold (threshold model), randomly chosen from a range of values.
We used the KS statistic to compare the simulated and observed
no-step hand cumulative RT distributions. The KS statistic was
minimized in the parameter space using a nonlinear minimization
procedure (fmincon) in MATLAB. We repeated this procedure 100
times, with different sets of initial parameter values, before choosing
the best value for the delay and threshold parameter. The parameters
estimated for either the delay or the threshold were also free param-
eters in the common command model.

RESULTS

To determine whether the programming of a saccadic eye
movement was influenced by the concurrent programming of a
hand movement and vice versa, we analyzed RTs when eight
subjects (experiment 1) performed eye-alone and hand-alone
movements separately vs. when they performed them together
(eye-hand) (Fig. 1A). Figure 2, A and B, shows the RT of a
typical subject. A similar trend was observed across all sub-
jects (Fig. 2C). Across the population, compared with the
eye-alone condition (255 � 40 ms), mean saccade RT in the
eye-hand condition (eyeeh RT � 299 � 50 ms) increased by 44
ms on average (n � 7/8 subjects, max � 67 ms, min � 13 ms,
P � 0.001). In contrast, the mean RT (472 � 60 ms) for
hand-alone compared with the mean hand RT in the eye-hand
condition (handeh RT � 392 � 74 ms) decreased by 80 ms on
average for eye-hand movements (Fig. 2B; n � 8/8 subjects,

Fig. 2. Behavior in eye-hand vs. eye-alone
and hand-alone conditions. A: saccade reac-
tion time (RT) in the eye-hand condition
(red) is delayed compared with the eye-alone
condition (blue). B: hand RT in the eye-hand
condition (cyan) is faster than in the hand-
alone condition (green). C: scatter plot of the
mean saccade and hand RT between the alone
vs. the eye-hand condition for the population.
The unity line is shown for reference. Mean
saccade RTs (red) above the unity line sug-
gest a slower saccade RT in the eye-hand
condition, while mean hand RTs (blue) be-
low the unity line suggest faster RT for the
hand in the eye-hand condition. D: scatter
plot of the saccade and hand RT standard
deviations (SDs) across subjects. The data
points in the coordinated condition (blue)
follow the unity line (black dashed line),
suggesting that variability in the saccade and
hand RTs is comparable. The SDs of the
hand-alone RTs are greater than the SDs of
the eye-alone RTs as the data points (red) lie
above the unity line. The best fit lines for the
coordinated (blue) and alone (red) condi-
tions are shown as dashed lines. E: scatter
plot of individual saccade and hand RTs in
the eye-hand condition plotted for a typical
subject shows a strong correlation. The best
fit line is shown as the black solid line and
the unity line as the black dashed line. F:
Pearson’s correlation coefficients calculated
between the saccade and hand RT in the
eye-hand condition across subjects. The as-
terisk denotes the data from the subject
shown in E.
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max � 135 ms, min � 11 ms, P � 0.001). In addition, mean
saccade and hand RT standard deviations (SDs) were 82 � 16
ms and 123 � 13 ms in the eye-alone and hand-alone condi-
tions, respectively, and were significantly different (Fig. 2D;
P � 0.001). In contrast, mean saccade and hand RT SDs were
79 � 15 ms and 87 � 16 ms, respectively, in the eye-hand
condition, and were not significantly different (Fig. 2D; P �
0.3515), even though their respective means were significantly
different (P � 0.001).

We also tested whether saccade and hand RTs were corre-
lated. The scatter plot of RT during the eye-hand condition, for
a representative subject is depicted in Fig. 2E. The Pearson’s
correlation coefficient for this subject was 0.60 (P � 0.001),
indicating a strong temporal correlation between the two ef-
fectors. A similar trend was observed across the population
(mean � 0.56 � 0.19, max � 0.79, min � 0.23, P � 0.05 for
all subjects; Fig. 2F).

The Common Command Model

Many studies have shown that SDs of typical RT distribu-
tions scale with mean RT (Luce 1986; Wagenmakers and
Brown 2007). Such an empirical relation is naturally explained
by the drift diffusion framework since an increase in mean RT
is accounted for by a longer duration of stochastic accumula-
tion, producing greater RT variability (Wagenmakers et al.
2005). In the context of eye-hand coordination, such a drift
diffusion framework envisages that, since the mean hand RT is
greater than mean eye RT, the SDs of their respective RT
distributions should also scale accordingly. We used this rela-
tionship to test whether, and the extent to which a common
command, as opposed to independent eye and hand accumu-
lators, underlies eye-hand coordination. We found that, even
though the mean hand RT distributions were significantly
greater than the mean eye RT distributions in the eye-hand
condition across subjects by 94 � 40 ms (P � 0.001), mean
SDs of the hand RT distributions did not scale with the larger
mean hand RTs. Interestingly, the difference in mean saccade
and hand SDs across subjects was only 7 � 7 ms and were not
statistically significant (P � 0.3515). The similarity of the SD
of the eye and hand RT distributions suggests that the planning
of eye-hand movements is amenable to simulation by a single
drift diffusion process. It also implies that the additional time
taken by the hand may reflect a delay intrinsic to the hand
effector system, which, not being part of the accumulator
process, does not add to the observed variability of the hand
RT in the eye-hand condition.

We verified the common command assumption by fitting the
eye and hand RT distributions with a single accumulator based
on the eye RT distribution. Differences in the mean eye and
hand RTs within the framework of a common command model
can, in principle, be accounted by two architectures shown in
Fig. 3, A and B: a delay incorporated into the planning of the
hand movement (delay model) or a differential threshold for
the eye and hand (threshold model). In the context of drift
diffusion, both of these models have different predictions. In
the threshold model, if the greater hand RT is due to a higher
threshold for the hand accumulator relative to the eye accumu-
lator, then hand RT variance is expected to be likewise greater
than the eye RT variance, as a consequence of stochastic
accumulation for a longer duration. Therefore, the slope of the

best fit line between the predicted and observed RT variances
across subjects should produce a slope greater than unity. In
contrast, the delay model does not contain any additional
stochastic accumulation for the hand RT. Therefore, the best
linear fit of the comparison of predicted with observed RT
variance across subjects should produce a slope closer to the
unity line. Figure 3, C and D, shows the best fits of hand RT
distributions for each model in a typical subject. Although both
models fit the mean hand RT distributions across subjects (Fig.
3E), the slope of the best fit linear regression for the hand RT
variance was closer to unity in the delay model (1.15) com-
pared with the threshold model (1.73) (Fig. 3F; P � 0.06).
Hence, the delay model better explained the data than the
threshold model.

Testing the Common Command Model

Since the previous data set was derived from a redirect task
in which the subjects were also asked to cancel their planned
responses in case the second target appeared (see MATERIALS

AND METHODS), we also measured coordinated eye-hand RTs in
a separate experiments (experiment 2) comprising 16 different
sessions (12 subjects; 4 subjects with 2 sessions), to ensure that
the presence of step trials did not confound the basic result. In
congruence with the results presented in Fig. 2, we found that
the mean saccade and hand RT distributions were significantly
different from each other (P � 0.001), while the SDs of the
same distributions were comparable (P � 0.77) (see Fig. 5A).

In experiment 2, subjects made pointing movements while
their EMG activity from the anterior deltoid muscle was
obtained. The EMG measurement allowed us to test the delay
model. Because the range of delays predicted by the model was
between 40 and 150 ms and fell within the reported range of
the time interval between the onset of EMG and the start of the
hand movement (Gribble et al. 2002; Karst and Hasan 1991),
we hypothesized that the neural correlate of the delay was the
time interval between the onset of EMG and the start of the
hand movement, also sometimes referred to as the electrome-
chanical delay (see Fig. 4). In congruence with previous work,
the mean delay measured from the EMG was 160 � 23 ms.
The predictions of the common command model, however,
underestimated the observed delay (mean predicted delay �
118 � 41 ms; P � 0.001). This underestimation by the model
is expected because we used the saccade RT distribution to
constrain the parameters of the common accumulator, while
EMG onsets may indicate the termination of the common
central component of the movement preparation which can
happen prior to saccade onset.

To test whether EMG onsets demarcate the termination of
the common central component of the movement planning, we
tested the trial-by-trial relationship between EMG onsets and
hand onsets as well as saccade onsets (Fig. 5B). Since EMG
onsets precede the hand onsets, we found a strong significant
temporal correlation (0.79 � 0.07). Interestingly, we also
found that saccade onsets were also strongly correlated (0.65 �
0.17) with EMG onsets. In addition, the partial correlation was
also significant (r � 0.50 � 0.2) across 16 sessions, suggesting
a relation between saccade onset and EMG onset without the
influence of the concomitant hand movement. To further test
for the signature of a common command, we compared the
SDs of eye and hand RTs with the SDs of the EMG latency
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distribution (from target onset). As predicted, we observed that
the SD of the EMG latency and hand RT distributions were
comparable (P � 0.44) and highly correlated (r � 0.91 P �
0.001). More interestingly, we also found strong correlations
between the SD of the EMG latency and saccade RT distribu-
tions (r � 0.91 P � 0.001), and the SD of these two distribu-
tions were also comparable (P � 0.29) (Fig. 5C). Taken
together, these data suggest that EMG onsets can be considered
a proxy measure of the central common command for eye and
hand movement plans.

Although EMG onsets were correlated with saccade onsets,
EMG onset typically occurred prior to saccade onset (Fig. 4),
even though the hand movement occurred after saccade onset.
We therefore hypothesized that the observed latency difference
may be due to the delay between the threshold of the common

command and the saccade onset. We therefore plotted the distri-
bution of delays (Fig. 4B) between the EMG onset and saccade
onset and observed that the hand EMG onset occurred 39 � 25 ms
before the saccade for the representative subject and across all 16
sessions (Fig. 5D, mean � 54 ms, max � 102 ms, min � 18 ms).
We, therefore, used the time difference between EMG onset and
saccade onset as an estimate of the oculomotor delay, as it agrees
well with the reported values in the literature (Robinson 1972;
Schiller and Stryker 1972; Straschill and Rieger 1973). After
incorporating the saccade delay into the common command
model, the predicted and the observed hand delays became com-
parable (P � 0.92), Moreover, we also found a strong correlation
(Fig. 5E) between the hand delay measured using EMG and the
hand delays predicted by the common command model (r � 0.51,
P value � 0.04, n � 16).

Fig. 3. Modeling eye-hand behavior using a
common command. A and B: schematic rep-
resenting the common command model. The
dashed red-blue trace represents a common
signal for initiating eye and hand effectors.
Movements are initiated when the common
command reaches threshold. The common
command model can be implemented either
with a temporal delay (A) or a differential
threshold (B) to ensure the proper temporal
order of saccade and hand execution. C and
D: cumulative hand RT distribution (gray) in
the eye-hand condition compared with the
predicted RT distribution by the delay
scheme (blue in C) and the threshold scheme
(red in D). E: scatter plot of the observed and
predicted mean hand RT by the delay scheme
(blue) and the threshold scheme (red) and
their respective best fits. Mean RT can be
explained by both schemes. F: scatter plot of
the observed and predicted RT variance by
the delay (blue) and threshold schemes (red)
and their respective best fits. The delay
model is a better predictor of the hand RT
variance since it is closer to the line of unity
slope (dashed black).
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In addition, we also observed, on average, a smaller fraction
of trials (37%) across the population in which the EMG onsets
occurred after the saccade, resulting in a counterintuitive neg-
ative saccade delay. In principle, these trials may reflect in-
stances when the common command model cannot explain the
data. To test this, we grouped the trials into two sets: trials in
which EMG onset occurs prior to saccade onset, and trials in
which EMG onset occurs after saccade onset. We compared
the SDs of the eye and hand RT distributions in each group
separately. We hypothesized that, if trials with EMG onset
after saccade onset reflect violations of the common command
model, then the SDs of eye and hand RTs would scale linearly,
since their means were significantly different. Contrary to this
hypothesis, we found that the SDs of eye and hand RTs were
comparable for trials in which EMG onset occurred after
saccade onset (P � 0.23), similar to trials in which EMG onset
occurred before saccade onset (P � 0.56). We also found a
robust eye and hand RT correlation for trials in which EMG
onset was detected after saccade (0.78 � 0.15), which was
comparable (P � 0.16) to the RT correlation in trials in which
EMG onset was detected before saccade (0.67 � 0.24). These
results suggest that trials with negative saccade delays may not
reflect violations of the common command model. We also
tested whether noise in the signal delayed the detection of
EMG onset, resulting in trials with negative saccade delays.
Consistent with this idea, we found the trials with EMG onset
detected after saccade onset to be typically associated with
large baseline noise compared with the trials in which EMG
onset was detected earlier. To quantify this effect, the SD of the
averaged baseline RMS signal for trials in which the EMG
onset either preceded or followed saccade onset was computed.
We found that the SD of the average baseline activity in the
trials in which the EMG onset was detected after saccade onset
was significantly greater (64 � 41 arbitrary units, P � 0.04)
than trials in which EMG onset was detected before saccade
onset (38 � 25 arbitrary units).

The common command model further assumes that the hand
delays are pure temporal delays during which no accumulation
happens. We hypothesized that if the estimated hand delay
from EMG is a pure temporal delay, then its variability is
expected to be independent of the mean estimated delay (Fig.
5F). To test this, the Pearson correlation coefficient was cal-
culated between the means and SDs of the hand delay calcu-
lated from the EMG across all the sessions and was found to be
negligible and nonsignificant (r � 0.25, P � 0.36, n � 16). In

contrast, the variability and mean saccade delay were highly
correlated (r � 0.8, P value � 0.001, n � 16).

Although a central common command model is expected to
generate perfect eye-hand RT correlations, presumably the
trial-to-trial variability in effector-specific delays is a prime
driver of the observed eye-hand RT correlations. To test this,
we computed the SD of the predicted and observed delay
distributions, operationally defined here as hand motor noise. A
comparison between the predicted and observed hand motor
noise showed that they were well correlated (Fig. 6A, r � 0.84,
P � 0.001 n � 16). Most importantly, the hand motor noise
calculated from the EMG and the correlation between the RT
of the eye and hand were negatively correlated (Fig. 6B, r �
�0.81, P � 0.001, n � 16). Likewise, we also observed a
similar inverse relation between the predicted hand motor noise
and eye-hand RT correlations (r � �0.72, P � 0.001, n � 16,
Fig. 6C). These data strongly implicate motor noise as a strong
determinant in de-correlating the temporally structured eye-
hand signal, emanating as a consequence of the common motor
command. In addition, the Pearson’s correlation coefficient
between eye and hand delays across trials for each session was
high (mean � 0.43 � 0.13, max � 0.63, min � 0.15, P �
0.001 for all sessions). Interestingly, we observed a trend that
the delay correlations shared a linear relationship (r � 0.46,
P � 0.09, n � 14 sessions) with the observed eye-hand RT
correlations, suggesting that the RT correlations may reflect
covariation in motor noise.

The above results were obtained by treating each session
as an independent measure, since we observed sufficient
variability across each repeat session (n � 4; 12 subjects, 16
sessions). Therefore, we also tested whether the basic results
held up by considering each subject, not each session, as an
independent measure. As shown earlier, the mean SDs of
eye and hand RT distributions were not statistically different
from each other (P � 0.40). The predicted and observed
delays (r � 0.62, P � 0.04, n � 11) were correlated. (The
mean hand delay estimated for 2 sessions of the remaining
one subject was 38 ms apart. Since pooling these sessions
together gave an unreliable estimate of the mean, they were
not included in this analysis.) Motor noise was also corre-
lated (r � 0.562, P � 0.057, n � 12). RT correlations
between eye and hand RT distributions and those predicted
by the common command model were also correlated (r �
0.92, P � 0.001, n � 12).

Fig. 4. Characterization of the EMG signal
with respect to hand and saccadic movement
onset. A: root mean square of the normalized
EMG signal (black) recorded from the ante-
rior deltoid muscle. EMG onset (cyan), sac-
cade onset (red) and hand movement onset
(magenta) are also shown for reference. B:
EMG and hand onsets aligned to saccade
onset showing EMG onset occurred prior to
saccade onset.
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Simulating the Common Command Model

Having estimated the parameters for the hand delay from the
data, we tested whether a common command model with a
delay and hand motor noise could explain the observed mean
eye and hand RT distributions and their associated correlation
for each subject. The model described in Fig. 7A assumes at
least two common stages, a visual stage that selects a target and
a movement planning stage that prepares the response (Thomp-
son et al. 1996). The sensory input consisted of a single
stochastic signal (generated from the RT distributions of the
eye). Since the same sensory signal was fed into both eye and
hand accumulators, a common movement plan accumulated to
a common threshold. Once the threshold was reached, the eye
movement was elicited, but the hand movement was elicited

after a mean delay that had a variable motor noise across trials.
These free parameters were optimized from an individual
subject’s data and are tabulated in Table 1 (experiment 1) and
Table 2 (experiment 2).

Figure 7B shows the comparison between the predicted and
experimental cumulative RT distributions of both eye and hand
effectors for a typical subject. The goodness of fit, accessed by
calculating the r2, was on average 0.99, (max � 0.99, min �
0.98) for the eye RT distribution, and 0.99 (max � 0.99, min �
0.96) for the hand RT distribution. More importantly, a regres-
sion line plotted between the predicted and the experimental
RT correlations revealed that this model [slope � 1, r � 0.86,
P � 0.001, n � 24 sessions; data pooled across experiments 1
(n � 8 subjects) and 2 (n � 16 sessions)] was a good predictor
of the data across all but three of the sessions (Fig. 7C). These

Fig. 5. Validation of the common command
model. A: scatter plot of the means and SDs
of eye and hand RT distributions. The SD of
the hand RT does not scale with the mean. B:
scatter plot of the trial-by-trial EMG onset
latencies plotted against eye (red) and hand
(blue) RTs for the same trial in a represen-
tative session. C: scatter plot of the SD of the
EMG onset latencies plotted against SD of
eye and hand RT for all the sessions. D: a bar
plot of estimated saccade delay across all
sessions. Subjects for whom sessions were
repeated are marked with a “R”. E: scatter
plot of the observed and predicted hand
delay. The best fit line is represented by the
solid black line. F: scatter plot of the means
and the SDs of the estimated hand and sac-
cade delays. The absence of correlation (r �
0.22, P � 0.71) indicates that the variance of
the hand delay does not scale with the mean.
The 4 extra recording sessions are denoted
with open symbols throughout the panel.
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evidences strongly suggest that common command model is a
physiologically valid model that can generate coordinated eye
hand movements.

Simulating an Interacting Accumulator Model for
Coordinated Eye-Hand Movements

Another architecture that could potentially explain the emer-
gence of eye-hand coordination was recently proposed by Dean
et al. (2011). They suggested that eye-hand RTs could be
modeled as independent but interacting accumulators. We,
therefore, tested the same model as an alternate possible
architecture using the data obtained from experiment 1. The
equations governing the accumulation for eye and hand were
given by:

aGOe�t� � aGOe�t � 1� � ��GOe � �h	e · aGOh�t � 1��
� �GOe (2)

aGOh�t� � aGOh�t � 1� � ��GOh � �e	h · aGOe�t � 1��
� �GOh (3)

where, aGOe and aGOh represent the present level of GO unit
activations for independent eye and hand accumulators at time
t; the mean drift rates for both accumulators are given by �GOe
and �GOh, which represent the mean strength of the sensory
signals; �GOe and �GOh are the Gaussian noise terms with zero
mean and standard deviations of �GOe and �GOh, which repre-
sent the noise in the respective sensory signals. �e�h and �h�e
are the coefficients that controls the strength of interaction
between the eye and hand accumulators.

To estimate the parameters of the model, we initially fitted
the eye and hand RT distributions in the independent condition
individually based on a simple accumulator model and esti-
mated the best fit parameters, which are tabulated in Table 3.
These two accumulators thus accounted for the eye-alone and
hand-alone conditions. These four parameters were subse-
quently used in the coupled interacting, accumulator model to
generate the RT distributions of the eye (Fig. 8A) and hand
(Fig. 8B) movements in the eye-hand condition. To estimate
the parameters that govern the strength of interaction between
eye and hand effectors, we used the observation that eyeeh RT
distribution is slowed down by 44 � 20 ms compared with the
eye-alone condition (�h�e), while the handeh RT distribution
was speeded up by 80 � 42 ms, relative to the hand-alone
condition (�e�h). The strength of interaction between the two
accumulators, which were two additional free parameters of
the interacting accumulator model (tabulated in Table 3), were
thus optimized using the Monte Carlo methods to generate the
eye and hand RT distributions in the coordinated condition.
The goodness of fit between the experimental data and simu-
lated RT distribution generated through the interactive model
was 0.96 � 0.04 and 0.99 � 0.004 for the eye and hand RT
distributions, respectively. The best fit line of the simulated and
observed mean eye and hand RTs across subjects was close to
the unity line (Fig. 8C) (slopee � 0.89, slopeh � 0.95) and was
also significantly correlated (re � 0.94, Pe � 0.001, rh � 0.97,
Ph � 0.001). This notwithstanding, the variances of the eye
and hand RT distributions were significantly overestimated
(Fig. 8D) by the model (Pe � 0.04, Ph � 0.01, Wilcoxon
signed-rank test). We also tested if correlations between the
eye and hand RTs emerged from the interactive accumulator

Fig. 6. Characterization of motor noise. A: scatter plot of the observed and
predicted hand delay SD, operationally defined as motor noise. The best fit line
is represented by the solid black line. B and C: scatter plot showing a negative
linear relation between the eye-hand RT correlation and the predicted motor
noise (C) estimated from the EMG (B). Best fit lines are also shown. The 4
extra recording sessions are denoted with open circles.
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model (Fig. 9A), as shown earlier by Dean et al. (2011).
However, due to the asymmetric nature of the interaction,
which involves an inhibitory drive from the hand accumulator
to eye accumulator, making it slower, and an excitatory drive

from the eye accumulator to the hand accumulator, making it
faster, the predicted RT correlations were negative (r � �0.22 �
0.04), in contrast to the data (mean r � 0.57 � 0.07).

We also tested a variant of the interactive eye-hand accu-
mulator model (Fig. 9B) in which inputs to the individual
accumulators were correlated (r � 1). As done previously, the
inputs to the accumulators, the strength of the sensory signal
(�GOe and �GOh) and the extent of noise (�GOe and �GOh), were
estimated from the RT distributions of the eye-alone and the
hand-alone conditions. To implement this model, we generated
two series of correlated random numbers, with 0 mean but
variances controlled by �GOe and �GOh. These noise values
were added to the mean strengths, �GOe and �GOh, at each time
instant to generate stochastic, but correlated, sensory signals.
These correlated stochastic signals were then accumulated to a
threshold based on Eqs. 2 and 3. Although this model gener-
ated positive correlations between the eye and hand RTs; their
magnitude was underestimated (mean r � 0.26 � 0.07) and not
correlated with the data (r � 0.13, P � 0.75), as shown in Fig.
9C. Taken together, these simulations suggest that such a
sequentially generated interactive accumulator model does not
account for behavior in the coordinated eye-hand condition.

To quantify the relative superiority of the common com-
mand model over the interactive model, we used an Akaike
Information Criterion (AIC) that penalizes a model with extra
parameters, to select the model that best predicted the observed
eye-hand RT correlations. The AIC value computed for the
interactive accumulator model (92.70) and the interactive ac-
cumulator model with correlated inputs (80.96) was greater
than the AIC value computed for the common command model
(�14.87), suggesting that the common command model was
the more parsimonious model that explained coordinated eye-
hand behavior.

Common Command Model for the Independent Conditions

We tested if the same common command framework could
account for the observed RTs in the eye-alone and hand-alone
conditions, using the data from experiment 1. As alluded to in
Fig. 2, A and B, the mean eye-alone RT across subjects was 44
ms faster than the mean eye in eye-hand or eyeeh RT, while the
mean hand-alone RT across subjects was 80 ms slower than the
mean hand in eye-hand or handeh RT. Unlike the eye-hand
condition, in which the mean SDs of the eye and hand RT were
comparable (mean eye SD � 79 � 15 ms and mean hand SD �
87 � 16 ms, P � 0.3515), the SDs of the RT for eye-alone and
hand-alone were significantly different across subjects (mean

Fig. 7. Testing the common command model. A: schematic of the common
command architecture. The purple square represents the visual stage where the
target gets encoded, and the light pink circle represents the common movement
preparation stage for the saccade and hand movement. The common stochastic
sensory signal characterizing the visual stage is shown as a dashed red and blue
trace. This signal is integrated over time in the common motor preparatory
stage to reach a threshold indicated by the dashed black line. Saccades are
immediately executed when the common signal reaches threshold, while the
hand movement is executed after a temporal delay with Gaussian jitter (green).
B: comparison between the observed (solid line) and predicted (dashed line)
cumulative RT distributions for the saccade (red) and hand (blue). C: scatter
plot of the observed vs. predicted eye-hand RT correlations across 24 sessions.
The line of unity slope (black) is shown for reference. Data from experiment
1 (n � 8, green) and experiment 2 (n � 12, blue) and 4 repeat sessions in
experiment 2 (n � 4, red) are demarcated.
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eye SD � 82 � 15 ms, mean hand SD hand � 123 � 13 ms,
P � 0.001). The significantly greater hand variability (P �
0.001) indicates that, unlike the eye-hand condition, variability
scales with mean RT in the hand-alone condition. This rela-
tionship suggests that a common motor program rising to a
single threshold cannot qualitatively explain RT distributions
of the eye and hand when they are executed in isolation.

To quantitatively verify this intuition, we attempted to fit the
hand-alone RT distribution to a common command model. We
used the best fit parameters (Table 1) that could fit the eye-
alone RT distribution to model the common command. The
delay between the actual execution of the hand movement and
the time at which the common command crossed the threshold
was optimized and is tabulated in Table 1. Figure 10A shows
the RT distribution for a typical subject, which indicates that,
although the mean hand RT distribution was well estimated, its
variance was underestimated. A similar trend was observed
across the population (Fig. 10, B and C). The correlation
between the predicted and observed means of the hand RT
across subjects was 0.99 (P � 0.001). Since the best fit line had
a slope of 0.99, no significant difference between the ob-
served and the predicted mean hand RT was observed (P �
0.58, Wilcoxon signed-rank test). However, the variance
estimated by the model and the data was not correlated (r �

�0.15, P � 0.73), and the slope of the best fit line was
�0.10. Moreover, the predicted and observed variance of
the hand RT distributions was significantly different (P �
0.02, Wilcoxon signed-rank test), suggesting that the com-
mon motor model underestimated the variance of the hand-
alone RT distribution.

To further show that the common command model did not
explain the RT distribution in the hand-alone condition, we
assessed the EMG from the anterior deltoid muscles of the
performing hand in four subjects who performed the hand-
alone version of the pointing task (experiment 3). We com-
pared the delay predicted by the common command model for
the hand-alone condition with the observed delay calculated
from the EMG data between the onset of EMG activity and the
actual initiation of the hand movement. The mean observed
delay (163 � 30 ms, n � 4) was significantly lower than the
mean predicted delay (217 � 36 ms, n � 8, P � 0.04). Taken
together, these data suggest that, while the common command
model can explain handeh RT distributions, the same model
failed to account for the hand-alone RT distribution. This
suggests that coordination may be achieved by a separate
dedicated network that instantiates a common command archi-
tecture.

Table 1. Optimal parameters for the common command model in experiment 1

Redirect Trials

Common Command Eye Hand Condition Common Command Alone Condition

Input Parameters Goodness of Fit Input Parameters Goodness of Fit

� � Delay Motor noise R2 Eye R2 Hand � � Delay R2 Eye R2 Hand

Subject 1 0.0071 0.0286 113.6952 51.0355 0.9978 0.9976 0.006 0.0559 246.641 0.9973 0.9956
Subject 2 0.0039 0.0186 42.7401 90.935 0.9966 0.9856 0.0027 0.0652 259.3924 0.9941 0.9968
Subject 3 0.0037 0.0161 40.7011 40.9395 0.9949 0.9951 0.0052 0.0239 170.6264 0.9971 0.9531
Subject 4 0.0049 0.0285 37.7186 61.1 0.999 0.9944 0.0064 0.0264 86.0713 0.97 0.8664
Subject 5 0.0029 0.0243 147.5976 91.8 0.9876 0.9803 0.0035 0.0266 236.5124 0.9995 0.9916
Subject 6 0.004 0.017 55.4539 92.9335 0.9889 0.9951 0.0038 0.0211 92.6748 0.9863 0.9686
Subject 7 0.004 0.0232 102.1918 139.9335 0.9995 0.9721 0.0053 0.0308 113.9792 0.9978 0.935
Subject 8 0.0033 0.0227 128.0078 150.285 0.9985 0.9663 0.005 0.0275 259.426 0.9936 0.9746

Optimal parameters that fit the eye and hand reaction time (RT) distributions in the eye-hand condition with the common command model for the 8 subjects
recorded on the redirect task are tabulated. Optimal parameters for the eye and hand RT when the alone condition was fitted with the common command model
are also tabulated. �, Strength of the sensory signals; �, noise in the sensory signal.

Table 2. Optimal parameters for the common command model in experiment 2

Eye-Hand EMG Trials � � Delay Motor Noise R2 Eye R2 Hand

Session 1 0.0043 0.0134 116.07 28 0.9979 0.9947
Session 2 0.0065 0.0152 138.68 33 0.9957 0.9962
Session 3 0.0069 0.0115 91.38 18 0.9962 0.9959
Session 4 0.0052 0.0130 30.58 66 0.9991 0.9809
Session 5 0.0054 0.0159 92.14 38 0.9952 0.997
Session 6 0.0053 0.0192 99.39 36 0.9966 0.9932
Session 7 0.0049 0.0126 115.58 15 0.9944 0.996
Session 8 0.005 0.0169 170.90 24 0.9977 0.9973
Session 9 0.0056 0.0113 116.82 34 0.9959 0.9978
Session 10 0.0043 0.0131 82.06 48 0.9955 0.9901
Session 11 0.0038 0.0147 109.67 54 0.9985 0.9932
Session 12 0.007 0.0215 116.25 36 0.9958 0.9944
Session 13 0.0038 0.0227 204.00 130 0.9556 0.9652
Session 14 0.0042 0.0211 133.01 55 0.9945 0.9872
Session-15 0.01 0.0583 170.89 45 0.9883 0.9617
Session 16 0.0045 0.0206 93.81 120 0.9886 0.9513

Optimal parameters that fit the eye and hand RT distributions in the eye-hand condition with the common command model for the set of 16 sessions are
tabulated. The goodness of fit measured through R2 is separately calculated and tabulated for the eye and hand distributions.
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DISCUSSION

Other than the presence of strong correlations, changes in
mean RTs in the eye-alone and hand-alone conditions relative
to the eye-hand condition are potentially a signature for eye-
hand coordination. Across subjects, we observed that saccade
RTs were delayed, while hand RTs were shortened during
eye-hand movements compared with their corresponding eye-
alone and hand-alone conditions. Similar patterns have also
been shown by others (Bekkering et al. 1994; Mather and Fisk
1985; Snyder et al. 2002). In contrast, other studies have
reported shift in the means that are contradictory to what we
have reported, i.e., on average, saccade RTs are faster and
average hand RTs are delayed (Dean et al. 2011; Lunenburger
et al. 2000) during eye-hand movements. One difference in our

task compared with others is that hand-alone, eye-alone and
eye-hand conditions for the initial eight subjects were embed-
ded in a task which required subjects to redirect their responses
to a new target on infrequent random “step” trials. Although
such a context is likely to have engaged proactive inhibitory
mechanisms, which would delay responses in anticipation of
step trials (Chiu et al. 2012; Farooqui et al. 2011), such delays
are expected to be a common factor across all the conditions.
In addition, we observed the same pattern of RT shifts between
the hand-alone and eye-hand conditions for four subjects dur-
ing which EMGs were recorded (experiment 3), even though
these subjects did not have to redirect their responses. How-
ever, other nuances may have influenced the different results.
For example, in the study with contrary results to ours (Dean et

Table 3. Optimal parameters for the interactive model in experiment 1

Eye-Independent Hand - Independent Interactive Accumulators

Redirect Trials � s R2 � s R2 bh�e be�h R2 Eye R2 Hand

Subject 1 0.006 0.0559 0.9973 0.0026 0.0121 0.9985 0.00067 0.0055 0.9644 0.9865
Subject 2 0.0027 0.0652 0.9941 0.0023 0.0119 0.0999 0.0078 0.0054 0.8777 0.9953
Subject 3 0.0052 0.0239 0.9971 0.0024 0.016 0.9977 0.0041 0.0023 0.9715 0.9887
Subject 4 0.0064 0.0264 0.97 0.0029 0.0267 0.9978 0.004 0.0033 0.9915 0.993
Subject 5 0.0035 0.0266 0.9995 0.0019 0.0116 0.9986 0.0022 0.00087 0.9724 0.9885
Subject 6 0.0038 0.0211 0.9863 0.0023 0.0194 0.9953 0.00001 0.00081 0.9856 0.9818
Subject 7 0.0053 0.0308 0.9978 0.0027 0.0187 0.9985 0.0039 0.00042 0.9735 0.9904
Subject 8 0.005 0.0275 0.9936 0.0021 0.0116 0.9995 0.0042 0.0011 0.9379 0.9967

Optimal parameters obtained by fitting the eye-alone and hand-alone RT distributions based on the simple diffusion type accumulator model for the 8 subjects
recorded on the redirect task are tabulated. The optimal interaction parameters and their goodness of fit obtained through the simulation of the interacting
accumulator models that fit the eye and hand RT distributions in the eye-hand condition are also tabulated.

Fig. 8. An interacting accumulator model
does not explain the RT distribution in the
eye-hand condition. A and B: cumulative
distributions of observed and predicted sac-
cades RT (cyan and green, respectively; A)
and hand RT (orange and violet, respec-
tively; B) distributions in the eye-hand con-
dition for a representative subject. C: scatter
plot of the observed and predicted mean
saccade (red circles) and hand RT (blue
squares) in the eye-hand condition. The data
points close to the unity line (black dashed
line) indicate a good fit to the model. D:
scatter plot of the observed and predicted
saccade (red circle) and hand (blue square)
RT variance. Data above the unity line indi-
cate that the model overestimated the vari-
ance, despite predicting the mean RT.
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al. 2011), the data were collected from extremely well-trained
nonhuman primates. Another source of difference across stud-
ies could be the nature of the block/session structure. For
example, Dean et al. (2011) measured eye-alone, hand-alone,
and eye-hand RTs in trials that were interleaved within a
session, while we recorded subjects on eye-alone, hand-alone
and eye-hand conditions on separate sessions. Although, in
principle, pooling and comparing RTs across different sessions
could be problematic, we counterbalanced the sessions across
subjects. Furthermore, since every subject showed the same
effect, we do not believe this to be a source of the difference.
However, in interleaved trials, since subjects would have had
to make an additional decision in each trial regarding the kind
of response expected, this may have influenced the pattern of
RTs across conditions. Despite these differences, in all studies
of eye-hand coordination, saccade RTs were always faster than
hand RTs, as we observed. However, the observation that the
variance of the eye and hand were equal, despite differences in
RT, indicate a common accumulator.

An attractive approach to model eye-hand coordination is to
model eye and hand preparatory activity as independent but
interacting accumulators (Dean et al. 2011). However, this
model failed to explain the observed eye-hand data. Most
importantly, while the model could explain the mean eye-hand
RT, it overestimated the variance of the eye and hand RT
distributions (Fig. 8D). Although the input to the hand accu-
mulators had a larger variance, since it was modeled on the
hand-alone RT, the excitatory drive from the eye moved the
hand accumulation to threshold earlier. Since the resultant
accumulation was shorter, the predicted variance was smaller
than the original hand-alone RT variance from which it was
derived. Yet this was not sufficiently small to explain the
observed hand RT variance in the eye-hand condition; a stron-
ger excitatory drive would be required to fit the variance with
the observed data. The stronger excitatory drive, however,
would lead to a faster mean hand RT than observed. Similarly,
inhibitory drive from the hand accumulator onto the eye
accumulator prolonged accumulation, resulting in the overes-
timation of the predicted eye RT variance in the eye-hand
condition. Although lowering the strength of the inhibition
could help fit the variance, this would underestimate the mean
eye RT. This inability to fit the means and the variances of the

Fig. 9. An interacting accumulator model does not explain the RT correlations
in the eye-hand condition. A and B: top panels represent a schematic of the
interacting accumulator model. The purple squares represent the visual stages,
and the light pink circles represent the movement preparation stages of the eye
and hand movement, which are separate but coupled. Separate sensory signals
are represented by the blue dashed line (hand) and the red solid line (eye).
These stochastic signals for eye and hand are integrated separately and rise to
threshold in the movement preparatory stage. The excitatory interaction from
the eye to the hand accumulator is shown by the rightward arrow, and the
inhibitory interaction between the hand to the eye accumulator is shown by a
leftward arrow. A: a variant of the interacting accumulator model in which the
inputs to the eye and hand accumulators are completely independent and
de-correlated as shown by separate noisy stochastic sensory signals. B: a
variant of the interactive accumulator model in which the inputs to the
accumulators are completely correlated, as shown by separate noisy but
correlated stochastic sensory signals. C: a scatter plot of the observed and
predicted eye-hand RT correlations across subjects. Two variants of the
interacting diffusion type accumulator were tested: an interacting model with
uncorrelated inputs (red) and completely correlated inputs (blue). The best fit
line (blue, red) is almost orthogonal to the unity line (dashed black). The
interacting model fails to explain the observed data.
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predicted eye and hand RT simultaneously highlights impor-
tant limitations of previous eye-hand studies, in which model
testing has been restricted to fitting means and correlations,
while neglecting the role of RT variance as an important
parametric constraint.

Differences between the Dean et al. (2011) study and ours
are also likely to reflect task differences. In their study, a
dual-task paradigm was employed, in which eye and hand
movements were made to a target when cued. We suggest that
having separate temporal delays for the initiation of eye and
hand movements disrupted the natural coordination between
the two effector systems. This is evident from the weaker RT
correlation in their data compared with the present study. There
were also differences in the modeling approaches used in that
study. Although both approaches attempt to fit accumulators
via drift diffusion, the approach taken was different. While we
used the strength of � and � in the sensory signal to charac-
terize the RT distributions, these two parameters were fixed to
constant values in the Dean et al. (2011) study. Their fits were
done by optimizing other parameters, like recruitment time
constant (
), residual time (To), strength of the recurrent exci-
tation (�) and the strength of interaction between eye and hand
accumulators (�r and �s). As a consequence, a direct compar-
ison between parameters is not feasible. Another difference is
that while Dean et al. only focused on the means of the eye and
hand RT distributions and their dependence on stimulus onset
asynchrony, we modeled a condition equivalent to the zero
stimulus onset asynchrony condition in their study, but took
into account the entire distribution, i.e., the means (Fig. 8C) as
well as the variances (Fig. 8D), which enabled us to discount
the interacting accumulator model. There were also differences
in the approach to fitting the models. In the Dean et al. study,
all the five parameters were optimized simultaneously. In
contrast, we used a sequential method in which the RT distri-
butions in the eye-alone and hand-alone conditions were used
to constraint the inputs to the accumulators, while the RT
distribution in the eye-hand condition helped to optimize the
strength of the interactions. We believe this to be a more
structured, data-driven method for estimating the strength of
the interaction parameters. On the other hand, however, such a
sequential approach may have reduced the overall degree of
freedom, compromising the ability of the interactive model to
fit the data. A more generous approach of freeing all six
parameters simultaneously, when fitting eye and hand RT
distribution in the coordinated eye-hand condition, although
more likely to produce better fits, would certainly come at the
cost of engendering multiple solutions. This notwithstanding, a
consideration of Fig. 7C, suggests that, even if the eye-hand
data were to be fitted by the interactive model, for 21 of the 24
sessions for which the common command model was almost a
perfect fit (on the unity line), an AIC metric would certainly
have penalized the 2 extra parameters in the interactive model.
Taken together, our results suggest that the common command
model outperforms the interactive model on the basis of par-

Fig. 10. The common command model does not explain the hand-alone and
eye-alone conditions. A: observed (gray) and predicted (blue) hand-alone
cumulative RT distributions. B: scatter plot of the observed and predicted
hand-alone mean RT across subjects. C: scatter plot of the observed and
predicted hand-alone RT variance. The data points below the unity line
indicate underestimation of the observed variance by the model.
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simony, as well as providing a deeper explanation for why the
SDs of the eye and hand RT distributions are comparable,
despite their mean RTs being significantly different.

Although the common command model accounted for the
observed data, the model we implemented had a critical as-
sumption in that the eye RT distribution was used as a proxy to
model the common command. This assumption is not entirely
valid, despite the relatively small inertia of the eye relative to
the hand, and firing rates of frontal eye field neurons instanti-
ating accumulation appear to reach the threshold 20–30 ms
before the actual execution of the saccade. (Bruce and Gold-
berg 1985; Hanes and Schall 1996; Segraves and Park 1993).
As a consequence, the common command model based on the
eye RT distribution is expected to underestimate the observed
temporal delay of the hand. Such an underestimation is what
we observed (Fig. 5E) in our model prediction compared with
the delays measured from the EMG. Nevertheless, despite this
underestimation, a significant correlation between the pre-
dicted and observed delays (Fig. 5E), as well as strong corre-
lations between the EMG and saccade onsets (Fig. 5B), sug-
gests the applicability of the model. Another consequence of
using the eye RT as a proxy of the common command is that
the EMG and saccade onsets should coincide precisely with
each other. However, we observed a discrepancy of 54 ms
between the observed data and model prediction. We speculate
that a large component of this delay may reflect the oculomotor
efferent delay from the superior colliculus to saccade onset,
which has been estimated to be about 30 ms from microstimu-
lation studies (Robinson 1972; Schiller and Stryker 1972;
Straschill and Rieger 1973).

The common command model also predicts a perfect corre-
lation between saccade and hand RT, but it has been shown in
our data, as well as in many other previous studies, that RT
correlations covers a wide range (Biguer et al. 1982; Gielen et
al. 1984; Herman et al. 1981; Mather and Fisk 1985). The
common motor command with effector-specific noise can ac-
count for such heterogeneity. The model also predicted a
negative correlation between the RT correlation of eye and
hand with the motor noise. Interestingly, we were able to show
a similar trend between the RT correlation and motor noise
measured from EMG (Fig. 6B). This is another physiological
validation of the common command model. It also suggests
that the peripheral motor noise can be a major component in
de-correlating the perfect RT correlation predicted by the
common command model between the eye and hand.

Although, the present data suggest a common command
architecture underlying eye-hand coordination, it is possible
that under more challenging behavioral contexts a more flex-
ible means of coordination maybe recruited. Under such con-
texts, an interactive accumulator model might provide a better
model to understand eye-hand coordination. Here we have
shown that the common command architecture is also used to
generate coordinated movements under relatively simple con-
ditions, like pointing, that generate strong eye-hand correla-
tions, in contrast to the more complicated dual-task condition
employed by Dean et al. (2011), in which the correlations were
much lower. Interestingly, in our own dataset, the behavior in
3 sessions out of 24 which could not be accounted for by the
common command model were all characterized by similar
low eye-hand RT correlations. Thus, in these three sessions,

subjects might have recruited a different strategy to accomplish
the task.
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