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Abstract

Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances
in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new
pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido [49,59:4,5]thieno(2,3-b)
quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses
anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on
neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and
human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death.
MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced
cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal
DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved
apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which
correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis
demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also
associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of
caspase-3 and cleaved Poly (ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells,
suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear
translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in
MPTQ treated neuro 2a cells. Collectively, MPTQ-induced neuro 2a cell death is mediated by ATM and p53 activation, and
Bax-mediated activation of caspase-dependent and caspase-independent mitochondrial apoptosis pathways.
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Introduction

Neuroblastoma is an aggressive, heterogeneous and most

common extra cranial childhood tumour affecting approximately

1 in 7000 children [1,2]. It originates from neuronal precursor

cells of sympathetic lineage and gives rise to tumours along

sympathetic nervous system [3,4]. Most primary tumours occur

within the abdomen with at least 50% arising in the adrenal

medulla. Other common sites of tumour development are the

neck, chest, abdomen and pelvis [5,6]. Although rare, brain also

appears to be the site for primary neuroblastomas in approxi-

mately 5% of European Neuroblastoma study group [7,8].

Neuroblastomas are classified into four different stages (I–IV).

Complete regression of the disease with minimal therapy is seen in

most infants with stages I or II even with metastatic disease but

older patients with stages III or IV frequently have metastatic

disease that grows relentlessly, despite the use of intensive

multimodal therapy [5]. Furthermore, older neuroblastoma

patients with stage IV are at high risk for death from refractory

disease [3]. A similar observation was also reported in India. Only

2 out of 101 neuroblastoma patients with stage III or IV remain

disease free and in others, disease relapsed soon after completing

the therapy (patients were administered courses of ‘‘OPEC’’

therapy, namely, vincristine 1.5 mg/m2 and cyclophosphamide
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600 mg/m2 on day 1, cisplatin 60 mg/m2 on day 2 and etoposide

120 mg/m2 on day 4) indicating the negligible effect of these

chemotherapeutic agents [9]. Therefore, identification and study

on the development of new drugs to treat high-risk neuroblastoma

are warranted.

Cancer cells are mitotic. Multiple cellular pathways play pivotal

roles in the proliferation of cancer cells through continuous DNA

replication, a key event in cancer cell proliferation. Therefore,

many known therapeutic drugs were developed against the

machineries that replicate DNA. DNA interacts with various

DNA intercalating drugs and inhibits cell proliferation. One such

drug is ellipticine. Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]

carbazole) is an alkaloid, first isolated from the leaves of Ochrosis

elliptica in 1959 [10]. Ellipticine has been successfully used to treat

various types of cancer such as acute myeloblastic leukemia,

osteolytic breast cancer metastasis, kidney cancers, brain tumours

[11] and neuroblastoma [12,13,14] with limited toxic side effects

and complete lack of haematological toxicity [15]. However,

ellipticine resistant neuroblastoma cells have also been reported

[16]. Since, high-risk neuroblastomas develop resistance to

cytostatics; development of new drugs to handle these solid

tumours is a constant need. Many derivatives of ellipticine and

structural analogue of ellipticine were developed and tested for

DNA intercalating property similar to ellipticine. One such

compound, 8-methoxypyrimido[49,59:4,5]-thieno(2,3-b)quinoline-

4(3H)-one (MPTQ), containing tetracyclic condensed quinoline

ring system was developed [17] and was shown to intercalate with

calf thymus DNA [18]. MPTQ has been shown to exhibit its

cytotoxic effect on human promyelocytic leukemia HL-60,

melanoma B16F10 cells [19] and induces apoptosis in a wide

range of leukemic cell lines [20,21]. Mechanisms related to

MPTQ-mediated cancer cell death are limited. Recently a single

report has suggested the MPTQ-mediated leukemic cell death

involved activation of p53-dependent intrinsic and extrinsic

apoptosis pathway [21]. However, the literature on the effect of

MPTQ on neuroblastoma is limited, only with a hint of

cytotoxicity [19] and mechanisms related to MPTQ-mediated

neuroblastoma cytotoxicity are completely unknown.

To study this in detail, we designed experiments to check the

cytotoxic effect of MPTQ on neuro 2a and SH-SY5Y (a mouse

and a human neuroblastoma cell line respectively). MPTQ–

mediated neuro 2a and SH-SY5Y cell death is dose and time-

dependent. Almost all neuro 2a cells (,99.8%) were found dead

after 96 hours (hrs) upon 30 mM of MPTQ treatment and

approximately 90% of SH-SY5Y cells died within 6 days of 90 mM
of MPTQ treatment. Since neuro 2a cells showed faster response

to MPTQ treatment than SH-SY5Y cells, we utilized neuro 2a

cells to study molecular mechanisms involved in MPTQ-mediated

neuroblastoma cell death. Nuclear DNA fragmentation and

Terminal dUTP Nick End Labelling (TUNEL) assays demon-

strated significant induction of DNA double-strand breaks (DSBs)

in neuro 2a cells after 48 hours of MPTQ treatment indicating the

involvement of apoptosis. Molecular analysis of MPTQ-mediated

cell death in neuro 2a cells demonstrated the involvement of

Ataxia-Telangiectasia mutated (ATM) activation (DNA double

strand break marker), p53 activation (DNA damage marker), Bax

upregulation (mitochondrial apoptosis marker), caspase and

Poly(ADP Ribose) polymerase (PARP)-dependent activation of

intrinsic but not extrinsic apoptotic pathway. Our results also

demonstrated the involvement of apoptosis inducing factor (AIF)

suggesting the activation of caspase-independent apoptotic path-

way in MPTQ-mediated neuroblastoma cell death. Collectively,

our results for the first time addressed multiple mechanisms

associated with MPTQ-mediated neuroblastoma cell deaths and

suggest the possible use of MPTQ in neuroblastoma therapy.

Materials and Methods

Cell Lines and Culture Condition
Neuro 2a (CCL-131), a mouse neuroblastoma cell line and SH-

SY5Y, a human neuroblastoma cell line were obtained from Prof.

Nihar Ranjan Jana [22,23] and Dr. Pankaj Seth [24] NBRC,

Manesar, Haryana, India respectively. Neuro 2a cells were grown

in DMEM (Invitrogen, USA) containing 5% heat inactivated fetal

bovine serum (FBS) (Hyclone, USA), 100 U/ml penicillin and

100 mg/ml streptomycin (Invitrogen, USA) in a humidified

incubator at 37uC with 5% CO2 in air. SH-SY5Y cells were

grown in DMEM containing 20% heat inactivated FBS, 100 U/

ml penicillin and 100 mg/ml streptomycin in a humidified

incubator at 37uC with 5% CO2 in air.

Preparation of MPTQ Reagent
MPTQ synthesis and characterization has been reported earlier

[17]. MPTQ stock solution of 90 mM was prepared in cell culture

grade dimethylsulfoxide (Sigma-Aldrich, USA) and sonicated at

75% energy for 2 minutes (mins) with 15 seconds (secs) on and

10 secs off cycles. MPTQ of 7.5, 15, 30 and 60 mM were

prepared from 90 mM stock by diluting further in DMSO.

Working concentrations of MPTQ were prepared by 3000-fold

dilution of the stock solutions in DMEM containing 5% FBS for

neuro-2a cells and 1000-fold dilution of stock reagents in DMEM

containing 20% FBS for SH-SY5Y cells.

Antibodies
Rabbit anti-phospho-p53 (Ser15) antibody (9384), mouse anti-

p53 antibody (1C12, monoclonal; 2524), rabbit anti-cleaved

PARP antibody (9544), rabbit anti-caspase-3 antibody (9662),

rabbit anti-caspase-6 antibody (9762), rabbit anti-caspase-7

antibody (9492) and mouse anti-caspase-9 antibody (C9, mono-

clonal; 9508) were purchased from Cell Signaling (Cell Signaling

Technology Inc., USA). Mouse anti-GAPDH antibody (6C5,

monoclonal; SC32233), mouse anti-PARP-1 antibody (C2-10,

monoclonal; S53643), rabbit anti-phopho-p53 (Ser20) antibody

(SC-21872-R), Goat anti-AIF antibody (SC-9416) and anti-Bax

antibody (SC-526) were purchased from Santa Cruz Biotechnol-

ogy (Santa Cruz, USA). Rabbit anti-AIF antibody (IMG-303-2)

and rabbit anti-phospho-ATM (Ser1981) antibody (IMG-90221-1)

were purchased from Imgenex (Imgenex Corp., USA). Rabbit

anti-caspase-2 antibody (AF826) and rabbit anti-caspase-8 anti-

body (AF1650) were purchased from R&D systems (R&D Systems,

Inc., USA). Horse-radish peroxidase (HRP)-conjugated secondary

antibodies against mouse, goat and rabbit were purchased from

Pierce (Thermo Scientific, USA) and were used for immunoblot

analysis. Alexa fluor 594 conjugated goat anti-rabbit F(ab’)2

fragments and Alexa fluor 594 goat anti-mouse F(ab’)2 fragments

were purchased from Molecular Probes (Invitrogen, USA) and

were used in immunocytochemical analysis.

Live-Dead Assay
MPTQ-mediated cell death in neuro 2a and SH-SY5Y was

studied using Live-Dead assay kit (Invitrogen, USA). The kit has

two fluorescent dyes, calcein-AM and ethidium homodimer. In

principle, calcein-AM can enter any cells but labels only live cells.

It is converted by cellular cytoplasmic esterases to a highly green

fluorescent calcein. Ethidium homodimer is excluded by live cells

with intact membrane but enters dead cell with broken membrane

to stain their nuclei red. Therefore, live cells fluoresce green where
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as dead cells fluoresce red. Neuro 2a and SH-SY5Y cells were

seeded at 20,000 cells/well and 100,000 cells/well respectively in

24-well tissue culture plates. After 48 hrs, neuro 2a cells were

treated with 2.5, 5, 10, 20 and 30 mM of MPTQ whereas SH-

SY5Y cells were treated with 90 mM of MPTQ in their respective

cell culture medium. Control cells were treated with equal volume

of DMSO. Live dead assay was performed 24 hrs post treatment

in neuro 2a cells but after 4days in SH-SY5Y cells. Live-Dead

reagent was diluted either in serum free DMEM or PBS (1X) to

2X concentration and added directly to the cell culture media at

1:1 ratio followed by a gentle but thorough mixing. Cells were

incubated in dark for 30 minutes at room temperature. After

incubation, 3–4 random images were captured per well using an

inverted microscope (Nikon Ti Eclipse, Japan) supported by

quantis monochromatic cooled CCD camera, MetaMorph soft-

ware and using FITC (for calcein) and Texas Red (for ethidium

homodimer) filter cubes. Number of live (green) and dead (red)

cells were counted using the multi-wavelength cell scoring module

of MetaMorph software. For time-dependent cytotoxicity of

MPTQ on neuroblastoma cells, neuro 2a cells were treated with

30 mM of MPTQ for 24, 48, 72 and 96 hrs and Live-Dead assay

was performed as described above.

Cell Viability Test by MTT Utilization Assay
Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-terazolium bromide (MTT) dye (Sigma-Aldrich, USA)

utilization and its conversion to formazan, as described previously

[25] with little modification. Briefly, 20,000 neuro 2a cells or 100,

000 SH-SY5Y cells were seeded per well in a 24-well plate. After

48 hrs, neuro 2a cells were treated with 30 mM of MPTQ for 24,

48 and 72 hrs in triplicates whereas SH-SY5Y cells were treated

with 30, 60 and 90 mM of MPTQ for 2, 4 and 6 days in triplicates.

DMSO treated cells were used as controls. After treatment, media

were replaced with serum free DMEM media containing 1 mg/ml

of MTT and incubated at 37uC in a 5% CO2 incubator for

additional 4 hrs. Intracellular formazan products were solubilised

by replacing MTT reagent with MTT solvent (4 mM HCl and

0.1% NP40 in isopropanol) and incubated for 15 minutes at 37uC
in 5% CO2. Contents were transferred to a 96-well tissue culture

plate and optical density was measured at 570 nm with reference

wavelength at 620 nm using Magellan-6 (version 6.5) software

provided with the plate reader (TECAN sunrise, Austria). Only

MTT solvent was used as reference. The cytotoxicity caused by

MPTQ was expressed as amount of formazan produced and

compared to DMSO treated controls.

DNA Fragmentation Assay
Neuro 2a cells were seeded at a density 20,000 cells/well in a

24-well tissue culture plate. After 48 hrs of culture, cells were

incubated with 2.5, 5, 10, 20 or 30 mM of MPTQ in triplicates.

DMSO treated cells were used as controls. Cells were lysed after

48 hrs of treatment in 100 ml of digestion buffer (100 mM NaCl;

10 mM Tris Cl, pH 8.0; 1 mM EDTA, pH 8.0; 0.1% SDS and

0.1 mg/ml Proteinase-K) per sample, incubated at 50uC for 3 hrs

followed by addition of 5 ml of SDS-OUT reagent from Pierce

(Thermo technology, USA). The content was mixed and

incubated on ice for 20 minutes followed by centrifugation at

10,0006g for 10 minutes at 4uC. Supernatants were collected in

fresh centrifuge tubes, treated with RNase for 20 minutes on ice

followed by quantification using NanoVue plus spectrophotometer

(GE healthcare, UK). Equal amount of DNA from each sample

(1.5 mg) were electrophoresed in a 2% agarose gel. Images of DNA

agarose gels were captured using chemidoc XRS+ geldoc system

(BIORAD, USA). Densitometric analysis of the fragmented DNA

was done using ImageLab software by subtracting the high

molecular weight DNA density from total DNA density.

Apoptosis Analysis by TUNEL Assay
Dead End Fluoremetric TUNEL system kit (Promega corp,

USA) was used to detect nuclear DNA fragmentation in MPTQ

treated neuroblastoma cells, a molecular measure of apoptosis.

The kit detects DNA strand breaks at single cell level by

incorporating fluorescein-12-dUTP at free 39-OH DNA ends by

recombinant terminal deoxynucleotidyl transferase (rTdT). Neu-

roblastoma cells were seeded in a density of 56105 cells/25 cm2

tissue culture flasks and cultured for two days followed by

treatment with 30 mM of MPTQ. Cells treated with equal amount

of DMSO were used as controls. The assay was done in

suspension. After 48 hrs of treatment, cells were collected in

1.5 ml micro-centrifuge tubes by gentle scrapping followed by

centrifugation at 3006g for 5 mins at room temperature (RT).

Cell pellets were washed two times with sterile PBS by

centrifugation at 3006g for 5 mins at RT. Cells pellets were

dislodged and fixed with 4% Paraformaldehyde for 30 mins at RT

followed by two PBS (phosphate buffer saline) washes for 5 mins at

RT. Cells were permeabilized with 0.2% Triton X-100 at room

temperature for 5 mins and washed twice with PBS for 5 mins at

RT. Cells were then labelled with fluorescein-12-dUTP as

described by manufacturer’s protocol. At this stage, a positive

and negative control samples were prepared from untreated neuro

2a cells. Untreated but fixed cells were treated with DNaseI

(amplification grade; Invitrogen, USA) to a final concentration of

7 U/ml for 15 mins at RT followed by three PBS washes at RT

for 5 min each. Cells were then aliquoted into two. Both the

aliquots were then labelled with fluorescein-12-dUTP either in the

presence of rTdT (positive control) or in the absence of rTdT

(negative control). Labelled and washed cells were then spotted on

slides coated with tissue adhering solution, allowed to dry and then

mounted with anti-fade gold mounting media containing DAPI

(Invitrogen, USA). After 16 hrs of curing, fluorescein-12-dUTP-

labelled DNA was visualized and images were captured from

several random fields as mentioned before. Images were analyzed

for percentage of TUNEL positive cells using cell scoring module

of MetaMorph software.

Bright Field Imaging
Neuro 2a and SH-SY5Y cells were grown in 24 well plates and

either treated with 30 mM of MPTQ or with equivalent amount of

DMSO (control). Bright field images of neuro 2a and SH-SY5Y

cells were captured after 48 hrs and 6 days of treatment

respectively from at least 3 random fields using 40X objective

lens with Hoffman modulation and thickness correction rings in

Nikon TS100 inverted microscope using NIS elements BR (2.3

version) software. Image scales were burned onto each picture

using the same software.

Immunocytochemistry
To determine key molecular players involved in MPTQ-

mediated apoptosis in neuro 2a cells, we examined the nuclear

level of phosphorylated p53 at Ser15 and Ser20, phosphorylated

ATM at Ser1983, caspase-3, AIF and cleaved product of PARP

and cytoplasmic level of pro-apoptotic Bcl2 family Bax protein in

MPTQ treated and untreated neuro 2a cells by immunocyto-

chemistry as described earlier [26]. Briefly, 20000 neuro 2a cells

were seeded onto Poly-L-Lysine (0.05 mg/ml) coated cover glass

slips or into each well of a 24 well cover glass plate. After 48 hrs,

cells were treated with 30 mM of MPTQ or with equal amount of

DMSO (controls) for 24 hrs. Cells were then washed with PBS and
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fixed with 4% PFA for 15 min. Next, the cells were permeabilized

and nonspecific epitopes were blocked in blocking buffer (PBS

with 0.1% BSA and 10% normal goat serum) for 1 hour at RT.

Cells were then incubated with primary antibody in blocking

buffer at 4uC overnight. After 5 washes in wash buffer (PBS with

0.1% BSA) for 5 mins each at RT, cells were incubated with

appropriate secondary antibody conjugated to Alexa fluor 594 for

1 hour at RT. Cells were then washed five times in wash buffer

(0.1% BSA in PBS), followed by one PBS wash and fixation with

4% PFA for 15 mins at RT. Cells were again washed thrice in

PBS, rinsed once with water and mounted with anti-fade

mounting medium containing DAPI. Fluorescent images were

captured using 40X plan fluor or 60X plan apo (with oil) objective

lens as described earlier using multi-dimension acquisition module

of MetaMorph software. Images from a same batch were captured

using identical image acquisition settings and preferably in one

sitting. Z-stack images were deconvoluted using 3D-deconvolution

module of MetaMorph. For qualitative presentation, maximum

projections were generated from 12 in-focus planes and images

were displayed with equal pixel intensity. For quantification of

fluorescence intensity in nuclear or cytoplasmic compartments of

cells, multi-wavelength cell scoring module was used with identical

settings.

Western Blotting
Neuro 2a cells were seeded in a density of 56105 cells/25 cm2

tissue culture flask or 16106 cells/75 cm2 tissue culture flasks and

cultured for 2 days followed by treatment with 30 mM of MPTQ

for 24 hrs. For experimental controls, cells were treated with equal

volume of DMSO. After 24 hrs of treatment, cells were collected

using cell scrapper and cell pellets were obtained by centrifugation

at 1000 RPM followed by a PBS wash. Total cell lysates were

obtained by dissolving cell pellets in 200 ml of RIPA buffer

(150 mM Sodium chloride, 10 mM Tris-Cl (pH 7.5), 0.5% Triton

X-100, 0.5% Sodium deoxycholate, 0.1% SDS, 1 mM Sodium

Orthovanadate, 1 ml/ml of Protease inhibitor cocktail from

Sigma-Aldrich). Lysates were sonicated at 75% energy for 2 mins

with 15 secs on and 10 secs off cycle, cleared by centrifugation at

10006g for 10 minutes at 4uC. Cytoplasmic and nuclear lysates

were isolated as described earlier [27]. Protein concentration was

determined by the bicinchoninic acid assay using Micro BCA

Protein Estimation Kit (Thermo-Pierce, USA). Equal amount of

proteins from each sample were size fractionated in appropriate

SDS-PAGE gel and transferred onto 0.2 mm nitrocellulose

membranes (BIORAD, USA). Blots were probed with anti-

caspase-2, anti-caspase-8, anti-caspase-9, anti-caspase-3, anti-

caspase-7, anti-PARP, anti-phospho-ATM and anti-AIF antibod-

ies for overnight at 4uC. Activation of p53 was assessed using anti-

p53, anti-phospho-p53 (Ser15) antibodies. Horseradish peroxi-

dase-conjugated secondary antibodies were used to develop the

membrane and visualisation of bands was performed using

supersignal chemiluminiscent substrate from Pierce (Thermo-

Pierce, USA). Anti-GAPDH either alone or in combination with

anti-histone-H3 antibody was utilized to normalize protein loading

and transfer.

Statistical Analysis
Statistics were performed using Sigmastat 3.5 software. When 3

or more groups were compared simultaneously, one way analysis

of variance (ANOVA) was used if data qualifies normality test.

When data failed the normality test, nonparametric Kruskal-

Wallis one way ANOVA on ranks was used. To compare two

groups, Student’s t-test was employed using Microsoft EXCEL

(two tailed, unpaired). Differences between groups were consid-

ered statistically significant when p#0.05.

Results

MPTQ Induces Cytotoxicity in Neuro 2a Neuroblastoma
Cells in a Dose-dependent Manner
Cytotoxic effect of MPTQ on neuro-2a neuroblastoma cells was

studied at different doses of MPTQ utilizing Live-Dead assay.

Neuro 2a cells were treated with 2.5, 5, 10, 20 or 30 mM of

MPTQ for 24 hrs. Images obtained from three independent

experiments clearly demonstrate dose-dependent increased cyto-

toxicity in MPTQ treated neuro 2a cells (Figure 1A). Images also

demonstrate chromatin condensation (white arrow head) and

nuclear fragmentation (yellow arrow head) in MPTQ treated and

ethidium homodimer positive neuro 2a cells. Significant increase

in cell deaths was observed from 10 to 30 mM of MPTQ treated

neuro 2a cells than controls. Although the difference in cell death

between 30 mM and 20 mM MPTQ treated cells was not

significant but maximum cell deaths (33.265.5%) was observed

in 30 mM of MPTQ treated cells (Figure 1B). Therefore, 30 mM of

MPTQ treatment was used in our subsequent experiments on

neuro 2a cells. Cell shrinkage, membrane blebbing, chromosomal

condensation and DNA fragmentation are some of the character-

istic morphological features of cells undergoing apoptosis

[28,29,30]. To examine this, neuro 2a cell were treated with

30 mM of MPTQ for 48 hrs. Bright field images clearly

demonstrated cell membrane blebbing (yellow arrow) and

prominent compaction of nuclear compartment (red arrow) in

MPTQ treated neuro 2a cell but not at all in control cells

(Figure 1C). Furthermore, fluorescent images from DAPI (a

nuclear stain) stained cells also demonstrated condensation as well

as fragmentation of nuclei, as seen in apoptotic cells (Figure 1D).

Thus, MPTQ-mediated neuro 2a cell death might involve

apoptosis.

Time-dependent Cytotoxic Effect of MPTQ on Neuro 2a
Neuroblastoma Cells
Since MPTQ had moderate cell toxicity on neuro 2a cells at

24 hrs post treatment, we examined whether its cytotoxicity effect

continued beyond 24 hrs post treatment. Neuro 2a cells were

treated with 30 mM of MPTQ and cytotoxicity was studied at 24,

48, 72 and 96 hrs post treatment. We utilized both MTT and

Live-Dead assays to monitor the progression of cytotoxicity. MTT

assay is a gross indicator of the presence of live cells that convert

MTT to formazan products. However, it may not be an ideal

experiment for absolute quantification of live cells in experimental

culture conditions. Live-Dead assay provides robust platform to

visualize even a single live cell in a particular experimental culture.

Analysis of MTT assay demonstrated significant time dependent

increased cytotoxicity in MPTQ treated neuro 2a cells. The

amount of formazan product almost reached zero (0.04460.035)

by 72 hrs while the untreated cells continued to grow during this

period (Figure 2A). Fluorescent images from Live-Dead analysis

also showed significant time-dependent cell death in MPTQ

(30 mM) treated neuro 2a cells (Figure 2B) than control cells. After

96 hrs of MPTQ treatment, we were able to detect only 6 live cells

out of 36 random images across 3 independent experiments, where

as in corresponding controls we found 5844 live cells. The

percentage of live cell population in control groups show more

than 90% cells are live till 72 hrs but decreased to 72% by 96 hrs

in culture, possibly because of depletion of nutrients in culture

media. In contrast, percentage of live cells in MPTQ treated

groups showed 65.6, 10.6, 1.53 and only 0.19% after 24, 48, 72
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and 96 hrs of treatment respectively. This change was statistically

significant by one way ANOVA, F= 48.896 and p,0.001 and as

well as by two tailed unpaired Student’s t-test (Figure 2C). Thus,

MPTQ retains its cytotoxic property over a long period of time

which resulted in a strong inhibition of neuro 2a neuroblastoma

cell proliferation.

MPTQ Treatment also Induces Strong Cytotoxic Effect on
Human SH-SY5Y Neuroblastoma Cells
To extend our study on the cytotoxic effect of MPTQ on

human neuroblastoma, we modelled SH-SY5Y, a slow growing

human neuroblastoma cell line. Bright field images show healthy

cells in untreated cells where as MPTQ treated cells showed

extensive cell shrinkage, membrane blebbing, chromosomal

condensation, nuclear fragmentation and cell death (Figure 3A).

Analysis of MTT assay demonstrated dose-dependent anti-

proliferative effect of MPTQ on SH-SY5Y cells. Untreated cells

continue to proliferate till 6 days in culture whereas SH-SY5Y cell

proliferation was strongly inhibited by all tested doses of MPTQ.

By fourth day post treatment, significant difference between

untreated and all the doses of MPTQ treated SH-SY5Y cells were

observed. Moreover 90 mM of MPTQ treatment was found to be

most efficient and was able to inhibit the proliferation of SH-SY5Y

cells by approximately 90% over untreated cells (Figure 3B). To

support our results further, we employed Live-Dead assay.

Untreated cells showed merely 1.65% dead cells after 4 days of

culture whereas, 90 mM of MPTQ treated SH-SY5Y cells

exhibited as high as 59.53% dead cells after 4 days (Figure 3C

and D). The difference between untreated and treated cells is

statistically significant by Student’s t-test (p,0.001). Taken

together our results strongly suggest the cytotoxicity effect of

MPTQ not only on a fast growing mouse neuro 2a neuroblastoma

cell line but also on human SH-SY5Y neuroblastoma cell line.

Since neuro 2a cells were more responsive to MPTQ treatment,

these cells were utilized in subsequent studies on molecular

mechanisms of MPTQ-mediated neuroblastoma cell death.

MPTQ Induces DNA Fragmentation in a Dose Dependent
Manner in Neuro 2a Neuroblastoma Cells
The DNA intercalation property of MPTQ [18] might interfere

with DNA replication and induce nuclear DNA insults including

DNA double strand breaks (DSBs). Presence of DSBs in the form

Figure 1. Increased cytotoxicity, and altered cell and nuclear morphology in MPTQ treated neuro 2a neuroblastoma cells. A) Live-
Dead assay on neuro 2a neuroblastoma cells was performed after 24 hours of 2.5, 5, 10, 20 or 30 mM of MPTQ treatment. Cells treated with equal
amount of DMSO and for same duration served as controls. Fluorescent images from four random fields were captured and were displayed with
equal pixel intensity. B) Percentage of dead cells was calculated using multi-cell scoring module of MetaMorph software. Data are expressed as
mean6standard deviation of three independent experiments. p value displayed for each treatment was calculated by comparing with control using
Student’s t-test. p value #0.05 is considered significant. C) Comparative morphology of normal and MPTQ treated neuro 2a cells. Bright field images
of normal and 30 mM of MPTQ treated neuro 2a cells demonstrate plasma membrane blebbing (yellow arrow), irregular nuclear compartments (red
arrow) only in MPTQ treated cells but not in normal cells after 48 hrs of treatment. D) DAPI stained images exhibit condensed and fragmented nuclei
(yellow arrow) only in MPTQ treated but not in normal cells, features typical to apoptotic cells.
doi:10.1371/journal.pone.0066430.g001
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of oligonucleosomal DNA ladder is an indicator of apoptosis [31].

To examine this in MPTQ treated neuro 2a cells, we utilized DNA

fragmentation assay. Total genomic DNA was isolated from

neuroblastoma cells after 48 hrs of treatment with 2.5, 5, 10, 20 or

30 mM of MPTQ. Agarose gel electrophoresis of genomic DNA

showed DNA ladders of oligonucleosomal size (integer multiples of

180 bp) from 10 mM onwards and became prominent at 20 and

30 mM (Figure 4A). The densitometric analysis of fragmented

DNA showed significant dose-dependent increased DNA frag-

mentation in MPTQ treated neuro 2a cells over corresponding

controls (One way ANOVA, F= 17.142, p,0.001). In addition,

two tailed unpaired Student’s t-test also indicated significant

difference between untreated controls and from 10 mM onwards of

MPTQ treatment (Figure. 4B). Taken together, our results

indicate the possible involvement of apoptosis in MPTQ-mediated

cell toxicity in neuro 2a neuroblastoma cells.

MPTQ-mediated Formation of Nuclear DNA Fragments
were Positive for TUNEL, a Marker of Apoptosis
Apoptotic DNA fragmentation is characterized by blunt end, 39

and 59 overhangs, out of which 39 overhangs are exclusively found

in apoptotic cells but not in necrotic cells. Terminal deoxynucleo-

tidyl transferase (TdT), key enzyme in TUNEL assay has higher

preference to label DNA fragments with 39 overhangs generated

during apoptosis [32,33]. We therefore utilized TUNEL assay to

detect cells undergoing apoptosis. Neuro 2a neuroblastoma cells

were treated with 30 mM of MPTQ and cells were harvested after

48 hrs of treatment. DMSO treated samples served as exper-

imental control. Fluorescence images from negative and positive

controls exhibited results as per our expectation suggesting the

methods and reagents were working satisfactory. In experimental

samples, majority of MPTQ treated neuro 2a cells were positive

for TUNEL staining whereas most of the cells were negative for

TUNEL staining in untreated cells (Figure 5A). Cell scoring

Figure 2. MPTQ treatment increases neuro 2a neuroblastoma cell death in a time-dependent manner using MTT and Live-Dead
assays. Neuro 2a cells were treated with 30 mM of MPTQ. DMSO treated cells were considered as controls. A) After 24, 48 or 72 hours of treatment,
cells were incubated with 1 mg/ml of MTT for 4 hours at 37uC in a CO2 incubator. Mitochondrial reduction of MTT to formazan was determined.
Amount of formazan was measured by absorbance at 570 nm with reference wavelength at 620 nm. Graphs were plotted as mean6standard
deviation of three independent experiments. B) Live-Dead assays were performed after 24, 48, 72 and 96 hrs post MPTQ treatment as described in
figure 1 and compared with their corresponding controls. Images were acquired and displayed with identical settings. C) Percentage of live cells and
dead cells were calculated as described in figure 1 and were plotted as histograms of mean6standard deviation of three independent experiments. p
value displayed for each treatment time was calculated by comparing with control sample using Student’s t-test. p value #561022 is considered
significant.
doi:10.1371/journal.pone.0066430.g002
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analysis further demonstrated that, approximately 82% of cells

were positive for TUNEL staining in MPTQ treated neuro 2a cells

but only 13% in corresponding controls (Figure 5B) and the

difference between these groups are significant by Student’s t-test

(p = 0.0005). Hence, our results strongly suggest the activation of

cellular apoptotic machineries in MPTQ-mediated neuro 2a cell

death.

Activation of ATM as a Marker of DNA Double Strand
Breaks in MPTQ Treated Neuro 2a Neuroblastoma Cells
Our earlier results showed nuclear DNA fragmentation and

TUNEL positive cells in MPTQ treated neuro 2a Cells.

Accumulation of fragmented DNA is a clear indicator of DNA

double-strand breaks (DSBs) which are potent biological genotoxic

lesions [34,35]. The key regulator of the DNA DSBs response is a

nuclear protein coded by Ataxia-Telangiectasia mutated (ATM)

gene [36]. It is a serine/threonine protein kinase. DNA DSBs

induce conformational changes in ATM and stimulate autopho-

sphorylation of ATM [37,38,39]. In order to study the mechanism

related to apoptosis and genotoxic effect of MPTQ on neuro 2a

neuroblastoma cells, we utilized an antibody specific for

phosphorylated ATM that recognizes activated mouse ATM

(phophorylated at Ser1983). Our immunocytochemistry results

demonstrated increased level of activated ATM in MPTQ treated

neuro 2a cells than their corresponding controls (Figure 6A). The

intensity of phosphorylated ATM in nuclear compartment was

found to be approximately 3-fold more in MPTQ treated than

untreated neuro 2a cells (Figure 6B). We also found increased

phosphorylated ATM in cytoplasm of MPTQ treated than

untreated neuro 2a cells (Figure 6B). To validate this result

further, western blot analysis of phosphorylated ATM was

performed on cytosolic and nuclear fractions of MPTQ treated

and untreated neuro 2a cells. Our result demonstrated decrease in

GAPDH level in nuclear fractions than cytosolic fractions which

suggests the enrichment of nuclei in our preparation. Results from

these nuclear extracts demonstrated increased phosphorylated

Figure 3. Cytotoxic and antiproliferative effect of MPTQ on human SH-SY5Y neuroblastoma cells. A) Bright field images after 6 days of
30 mM MPTQ treated cells exhibit gross morphological disintegration compared to untreated cells. SH-SY5Y cells demonstrate plasma membrane
blebbing with cytoplasmic oozing (yellow arrow head) and irregular nuclear compaction and fragmentation (red arrow head) only in MPTQ treated
cells but not in normal cells. B) Antiproliferative effect of MPTQ on SH-SY5Y cells by MTT assay. Cells were treated with 30, 60 or 90 mM of MPTQ or
with equal amount of DMSO (control) for 2, 4 and 6 days. After each time point, MTT assay was performed as described earlier. Graphs were plotted
as mean6standard deviation of three independent isolates. * indicates the differences between untreated and treated samples are statistically
significant (p,0.05; Student’s t-test). C) Live-Dead assay on MPTQ (90 mM) treated SH-SY5Y cells show increased number of dead cells after 4 days
over untreated cells. D) Number of dead cells were counted from three random fields and from three separate experiments and plotted as histogram
(mean6standard deviation). p-value #0.05 represents statistical significance between the mean of untreated and MPTQ treated SH-SY5Y cells.
DAT= days after treatment.
doi:10.1371/journal.pone.0066430.g003
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ATM level in all the isolates of MPTQ treated cells than

corresponding controls (Figure 6C). However, unlike our immu-

nocytochemical result, phosphorylated ATM was not observed in

the cytosolic fraction of MPTQ treated and untreated isolates

(Figure 6C). Such difference between immunocytochemistry and

western blot could be due to low level of phosphorylated ATM

protein in cytosolic fractions (which are roughly 10 times diluted

than nuclear extract) or due to the difference in the efficiency of

antibody-antigen interaction in these two assay systems. Densito-

metric analysis of phosphorylated ATM band in nuclear fractions

demonstrated approximately 4.8-fold more in MPTQ treated cells

than untreated isolates and the difference is statistically significant

(Student’s t-test; p = 0.007) (Figure 6D). Taken together, activation

of ATM suggests MPTQ as a genotoxic agent which might have

induced DNA DSBs in neuro 2a neuroblastoma cells and might

have engaged cells to activate other factors associated with

apoptosis.

Activation of p53 is Associated with MPTQ-mediated
Apoptosis in Neuro 2a Neuroblastoma Cells
One of the downstream targets of activated ATM is p53

protein, the guardian of the genome [40]. Activated ATM can

phosphorylate p53 at Ser15 [41,42] and Ser20 [43,44]. In

addition, p53 is a key regulator to various cellular stress responses,

specifically those that induce DNA damage. Since MPTQ is a

DNA intercalating agent and has activated ATM in our study, we

therefore examined the induction of p53 and activation of p53 by

its phosphorylation at Ser15 and 20. We utilized both western blot

and immunocytochemical analysis. Western blot analysis of neuro

2a cells lysates obtained after 24 hrs of MPTQ (30 mM) treatment

demonstrated increased phosphorylation of p53 at Ser15 than

untreated cells. However, no significant change in the amount of

total p53 and GAPDH was observed between treated and control

cell lysates (Figure 7A). A more robust data was also obtained

when cells were immunolabelled in situ with an anti-phospho-p53

(Ser15) antibody. Increased level of nuclear phosphorylated p53

(Ser15) was observed in MPTQ treated neuro 2a cells than control

cells (Figure 7B). The nuclear intensity of phosphorylated p53

(Ser15) was measured and results show approximately 2.55-fold

more of phosphorylated p53 (Ser15) in MPTQ treated neuro 2a

cells than their corresponding controls (Figure 7C) and is

statistically significant by Student’s t-test (t = –8.562 and

p= 0.001). Furthermore, nuclear phosphorylated p53 (Ser20) level

was also more in MPTQ treated neuro 2a cells than untreated

neuro 2a cells by immunocytochemical analysis (data not shown).

Thus, activation of p53 correlates with activation of ATM and

suggests MPTQ as a potent genotoxic agent, which might be

activating apoptotic pathways in neuro 2a cell deaths.

MPTQ-mediated Neuro 2a Neuroblastoma Cell Death is
Associated with Bax Induction
The requirement of Bax for p53-mediated apoptosis [45] and

enhancement of p53-mediated transcriptional activity by the

phosphorylation of p53 at Ser15 has been reported [42]. Bax, the

first member of Bcl-2 family of pro-apoptotic proteins is known to

be induced by p53 [46]. It has been shown earlier that increased

expression of Bax enhances cell death by various apoptotic stimuli

[47]. Since p53 is activated in our study, we examined the possible

Figure 4. MPTQ induces nuclear DNA fragments of oligonucleosomal size in neuro 2a cells. A) Agarose gel electrophoresis of genomic
DNA isolated from untreated and 2.5, 5, 10, 20 or 30 mM MPTQ treated cells for 48 hours indicated dose-dependent increased DNA fragmentation. B)
Intensity of fragmented DNA was calculated and mean with standard deviation was plotted. Data represents three independent experiments. p value
displayed for each duration of treatment was calculated by comparing with control sample using Student’s t-test. p value #561022 is considered
significant. AU=Arbitrary Units.
doi:10.1371/journal.pone.0066430.g004
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involvement of Bax in our study. Fluorescent images from

immunocytochemistry demonstrated increased Bax-immunoreac-

tivity in MPTQ treated neuro 2a cells. In untreated cells a diffused

Bax signal was observed but more of punctuated Bax signal was

observed in MPTQ treated neuro 2a cells (Figure 8A). Intensity

measurement analysis show 3.5-fold more Bax immunosignal in

the cytoplasm of MPTQ treated neuro 2a cells than corresponding

controls (Figure 8B). Collectively, induction of Bax protein for the

first time suggests the possible involvement of mitochondrial

apoptosis pathway in MPTQ-mediated cell death in neuro 2a

neuroblastoma cells.

MPTQ-mediated Neuro 2a cell Death Activates Caspases
Involved in Intrinsic Apoptotic Pathway
In p53-Bax activation pathway, mitochondrial outer membrane

permeabilization by Bax triggers the initiation of intrinsic

apoptosis pathway. Interaction of caspase-9 with Apaf-1, in the

presence of cytochrome-c released from mitochondrial intermem-

brane space activates apoptosome that further activate down-

stream caspases. During this process, casapse-9 is autoprocessed to

finish the apoptosome acitivity. Thus, proteolytic activation of

caspase-9 (an initiator caspase of intrinsic apoptotic pathway) acts

as an indicator of the initiation of intrinsic apoptosis pathway as

well as permeabilization of mitochondria [48,49]. Activation of

p53 also has the ability to activate extrinsic apoptotic pathway in

which, proteolytic activation of caspase-8 serves as a key marker.

Nothing is known about these pathways in MPTQ-mediated cell

death in any neuroblastoma cells. To study both the apoptotic

pathway, we examined activation of caspases related to extrinsic as

well as intrinsic apoptotic pathways in MPTQ-mediated cell death

in neuro 2a neuroblastoma cells. Western blot results strongly

demonstrated the activation of caspase-9 but not caspase-8 in

MPTQ treated neuro 2a cells (Figure 9A), suggesting the

activation of only intrinsic apoptotic pathway. Furthermore,

Figure 5. MPTQ induced nuclear DNA breaks in neuro 2a cells are positive for TUNEL staining, an indicator of apoptosis. Neuro 2a
cells were cultured and treated with 30 mM of MPTQ for 48 hrs. Control cells were treated with equal amount of DMSO. A) Fluorescent images of DAPI
and fluorescein-12-dUTP were captured from multiple random fields using multi-dimension acquisition module of MetaMorph using identical
settings and images were displayed with equal pixel intensity. Images display increased TUNEL positive neuro 2a cells in MPTQ treated cells than
control cells B) Number of TUNEL positive cells were calculated using multi-cell scoring module of MetaMorph software and mean of three
independent experiments are presented as histograms with standard deviation as error bars. Results indicated more than 80% cells were positive for
TUNEL in MPTQ treated cells where as only 13% in control cells. p value was calculated by Student’s t-test and displayed. p#0.05 is considered
statistically significant.
doi:10.1371/journal.pone.0066430.g005
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processed product of caspase-2 was not observed in our study

indicating caspase-9 activation as the main initiation event in

MPTQ-mediated activation of intrinsic apoptotic pathway in

neuro 2a cells. Downstream targets of caspase-9 are caspase-3 and

caspase-7. Both caspase-3 and caspase-7 were activated in MPTQ

treated neuro 2a cells (Figure 9A). Activated caspase-3 has been

known to have targets in nuclear compartment for the initiation of

DNA damage [50,51] suggesting its nuclear localization. To study

the localization of caspase-3, we employed immunocytochemistry.

Increased caspase-3 signals were found in MPTQ treated neuro 2a

cells than untreated cells (Figure 9B). Fluorescent intensity

measurement demonstrated caspase-3 nuclear signal is approxi-

mately 3-fold more in MPTQ treated neuro 2a cells than controls

and is statistically significant (p = 0.0001) (Figure 9C). Although

cytoplasmic signals were also more in treated cells but the

difference in the mean between MPTQ treated and untreated cells

is not significant (p = 0.08; data not shown). To validate the

localization of cleaved caspase-3 in MPTQ treated neuro 2a cells,

western blot analysis were performed separately on cytosolic and

nuclear fraction of untreated and treated cells. Similar to our

previous result, no cleaved caspase-3 products were seen in both

the fraction of untreated cells. However, cleaved caspase-3 were

clearly seen in both the fractions of MPTQ treated cells

(Figure 9D). Moreover, densitometric analysis of cleaved cas-

pase-3 and procaspase-3 band indicates approximately 6-fold

increased cleaved caspase-3 in the nuclear fraction than cytosolic

fraction of MPTQ-treated cells (Figure 9E) indicating the

translocation of cleaved caspase-3 into the nucleus of MPTQ-

mediated cytotoxicity in neuro 2a cells and its role in the nucleus

of apoptotic cells. Taken together, our results clearly suggest the

involvement of intrinsic but not extrinsic apoptotic pathway in

MPTQ-mediated neuro 2a cell death.

MPTQ Inactivates PARP in Neuro 2a Neuroblastoma Cells
Poly (ADP Ribose) polymerase (PARP) is a 116 kDa chromatin-

associated protein that binds with DNA strand breaks and

catalyzes long branched polyADP-ribose on many nuclear protein

and on itself using NAD+ [52]. PARP is a nuclear target of cleaved

caspase-3 and caspase-7 and proteolytic cleavage of PARP is

considered to be a hallmark feature of apoptosis [53,54,55,56].

PARP is cleaved by these caspases between Asp214 and Gly215

residues to produce 24 kDa and 89 kDa fragments with the loss of

its catalytic activity [55,56]. Since increased proteolytic activation

of caspase-3 and caspase-7 was found in MPTQ treated neuro 2a

cells, we studied the proteolysis of PARP by western blot and

immunocytochemical analysis. Western blot analysis demonstrated

Figure 6. MPTQ-mediated neuro 2a neuroblastoma cell death is associated with increased phosphorylation of ATM. A) 30 mM of
MPTQ treated or untreated cells were fixed after 24 hours of treatment and immunolabelled with an antibody specific for phosphorylated ATM
(ser1983). Detection was done using Alexa fluor 594 labelled secondary antibodies. Nuclei were stained by DAPI. Z-stack images were captured from
multiple random fields, processed and displayed as described in methods. B) Intensity of phospho-ATM was measured in cytoplasmic and nuclear
compartment. Histograms represent mean6standard deviation of three independent images from two independent experiments. C) Western blot
analysis of phosphorylated ATM on cytosolic and nuclear fraction of MPTQ treated or untreated neuro 2a cells. Blots were also immunoblotted with
anti-GAPDH and anti histone H3 antibodies for normalization. The results indicate increased phosphorylated ATM level in nuclear compartment of
MPTQ treated cells than untreated cells. D) Densitometric analysis of phosphorylated ATM bands was performed and the values are plotted as
mean6standard deviation of three independent isolates. Statistical analysis was made by Student’s t-test and p value is displayed. p value #0.05 is
considered significant.
doi:10.1371/journal.pone.0066430.g006
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the presence of only full length PARP protein in untreated cells but

a strong proteolytic 89 kDa PARP fragment and weak 116 kDa

full length PARP protein in all the isolates of MPTQ treated cells

(Figure 10A). In continuation, we utilized an antibody specific for

cleaved PARP in our immunocytochemical studies. Images from

immunocytochemical analysis demonstrate the presence of cleaved

PARP positive cells only in MPTQ treated neuro 2a cells but not

at all in control cells (Figure 10B). Thus, proteolysis of PARP

correlates with the increased nuclear DNA fragmentation in

MPTQ treated neuro 2a cells and strongly suggests the

involvement of apoptosis.

MPTQ Treatment Increases Nuclear Localization of AIF in
Neuro 2a Neuroblastoma Cells
Mitochondria-mediated apoptosis not only occurs through

caspase-mediated activation of intrinsic apoptotic pathway but

can also occur through an alternative mitochondrial route,

independent of caspases [57]. During mitochondrial outer

membrane permeabilization several mitochondrial intermem-

brane proteins are released into the cytoplasm and activates pro-

apoptotic stimulus independent of caspases. One such protein is

apoptosis inducing factor (AIF). Upon genotoxic stimulus, AIF

translocates from mitochondria to cytoplasm and nucleus, where it

induces large scale DNA degradation [58]. To study the possible

involvement of AIF in MPTQ-mediated cell death in neuro 2a

cells we utilized both western blot analysis and immunocytochem-

istry. Result from western blot analysis didn’t show any visible

changes in AIF level between MPTQ treated neuro 2a cells and its

corresponding controls (Figure 11A). However, immunofluores-

cence analysis demonstrated granular pattern of AIF in the

cytoplasm of untreated and treated cells but AIF was detected

more in the nucleus of MPTQ treated neuro 2a cells than

untreated cells (Figure 11B). Analysis of immunofluorescence

image under similar settings demonstrated approximately 13% of

the cells were positive for mild nuclear AIF immunostaining in

controls whereas more than 80% of the cells were positive for

Figure 7. MPTQ-mediated cell death is associated with
increased phosphorylation of p53 at Ser15. A) Western blot
analysis of phospho-p53 (Ser15), p53 and GAPDH. Neuro 2a cells were
either treated with 30 mM of MPTQ or DMSO alone for 24 hours. Three
independent isolates were obtained and 60 mg of total proteins were
size fractionated in 12% SDS-PAGE and western blotted either with anti-
phospho-p53 (ser15) or with anti-p53 antibody. The blots were stripped
and hybridized with anti-GAPDH antibody to normalize any loading
difference. B) Immunocytochemistry of phopho-p53 (Ser15). Images
represent three independent experiments C) Nuclear phospho-p53
(Ser15) intensity was measured as described in figure 6. Histograms
represent mean integrated nuclear phopho-p53 (Ser15) intensity6SD of
three independent experiments. p value calculated by Student’s t-test is
displayed which indicates significant increased phosphorylation of p53
at Ser15 in MPTQ treated neuroblastoma cells.
doi:10.1371/journal.pone.0066430.g007

Figure 8. MPTQ treatment increases Bax protein expression
and redistribution in neuro 2a neuroblastoma cells. A) Neuro 2a
cells were cultured and treated with 30 mM of MPTQ for 24 hours
followed by immunocytochemistry for Bax expression by an anti-Bax
antibody. Detection was done using Alexa 594 labelled secondary
antibody. Nuclei were stained with DAPI. B) Cytoplasmic level of Bax
immunosignal was obtained using multi-cell scoring module of
MetaMorph software and mean of three random images were displayed
as histograms. Error bar indicates standard deviation. p value was
calculated by Student t-test and is displayed which strongly indicates
the overexpression of Bax protein in MPTQ treated neuro 2a cells.
doi:10.1371/journal.pone.0066430.g008
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Figure 9. MPTQ-mediated cell death is associated with activation of caspases of intrinsic apoptosis pathway but not of extrinsic
pathway. A) Neuro 2a cells were cultured and treated with 30 mM of MPTQ for 24 hours and lysates were prepared. 60 mg of total proteins were
resolved in 12% SDS-PAGE and immunoblotted with anti-caspase-8 or anti-caspase-2 or anti-caspase-9 or anti-caspase-3 or anti-caspase-7 antibody.
Blots were stripped and immunoblotted with anti-GAPDH antibody. The results clearly indicate the activation of caspase-9, -3 and-7 but not caspase-
8 and -2 in MPTQ treated cells. B) Immunocytochemistry of caspase-3 protein was performed as described earlier. Increased caspase-3 level was
observed in the nucleus of MPTQ treated neuro 2a cells but not in control cells. C) Nuclear level of caspase-3 immunosignal was obtained using multi-
cell scoring module and mean of three random images of two independent experiments were displayed as histograms. Error bar indicates standard
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nuclear AIF immunosignal in MPTQ treated neuro 2a cell

(Figure 11C). The level of nuclear AIF immunosignal was

approximately 4-fold more in MPTQ treated neuro 2a cells than

untreated cells and are statistically highly significant (p,0.001)

(Figure 11D). It should be noted that nuclear translocation may

not alter the total cellular level of AIF. In addition, we observed an

increased immunosignal of AIF in the cytoplasm of MPTQ treated

cells than untreated cells. This could be due to the easy interaction

of AIF to its antibody outside the mitochondria in MPTQ treated

neuro 2a cells than inside the mitochondrial membrane in

untreated cells. To validate the nuclear translocalization of AIF,

western blot analysis was employed on cytosolic and nuclear

fractions of untreated and MPTQ treated neuro 2a cells. Our

results show similar AIF and GAPDH level in the cytosolic fraction

of MPTQ treated and untreated cells (Figure 11E and F). In

nuclear fraction, approximately 8-fold increased AIF level is

observed in MPTQ treated neuro 2a cells than untreated cells

(Figure 11F). However, such dramatic change of nuclear AIF level

is not captured on our western blot (Figure 11E, lower panel). We

found small amount of cytoplasmic contamination in our nuclear

fraction and which was more in untreated cells than MPTQ

treated cells (Figure 11E, lower panel). This could be partially

because of unequal cell density between untreated and treated

neuro 2a cell. However, after normalizing the AIF density by

deviation. D) Western blot analysis of cleaved caspase-3 level in cytosolic and nuclear fraction of MPTQ treated or untreated neuro 2a cells. Blots were
also immunoblotted with anti-GAPDH and anti-histone H3 antibodies for normalization. E) Densitometric analysis of procaspase-3 and cleaved
caspase-3 bands were made from cytosolic as well as from nuclear fractions. Cleaved caspase-3 to procaspase-3 ratio was obtained. Mean and
standard deviation from three independent isolates were obtained and plotted as histograms. p value was calculated by Student’s t-test and is
displayed which indicates significant increased mobilization of cleaved caspase-3 from cytoplasm to nucleus in MPTQ treated neuro 2a cells.
doi:10.1371/journal.pone.0066430.g009

Figure 10. Increased proteolysis of PARP in MPTQ treated neuro 2a neuroblastoma cells. A) Neuro 2a cells were cultured and treated with
30 mM of MPTQ for 24 hours and lysates were prepared from three independent treatments. 60 mg of total protein were size fractionated in 12% SDS-
polyacrylamide gel and immunoblotted with anti-PARP antibody that detects both full length PARP and cleaved PARP. Cleaved PARP is seen only in
MPTQ treated N2a cells but not at all in control cells indicating the proteolysis of PARP, a hallmark feature in apoptotic cells. B) Immunocytochemistry
of PARP using an antibody specific for cleaved PARP. Detection was done using Alexa fluor 594 labelled secondary antibodies. Nuclei were stained
with DAPI. Nuclei with cleaved PARP were seen only in MPTQ treated cells. The figure represents at least three independent experiments.
doi:10.1371/journal.pone.0066430.g010
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GAPDH and histone H3 protein, a significant increased nuclear

AIF level was established (Figure 11F) suggesting the involvement

of AIF as a signature for the activation of caspase-independent

apoptotic pathway in MPTQ treated neuro 2a cell deaths.

Discussion

The results from the present study clearly demonstrated that,

MPTQ, a quinoline derivative compound, a structural analogue of

ellipticine is cytotoxic not only to mouse neuro 2a neuroblastoma

cells but also to human SH-SY5Y neuroblastoma cells in a dose

and time-dependent manner. Furthermore, our results for the first

time illustrated the mechanisms associated with MPTQ-mediated

cytotoxicity in neuroblastoma cells. Although the reports on

anticancer property of MPTQ has been very limited, but MPTQ

inhibited proliferation of various leukemic cells [20,21], melanoma

cell [19] and mouse breast carcinoma cells [21]. Till today, a single

report suggests the cytotoxic effect of MPTQ on neuro 2a

neuroblastoma cell with approximately 40% growth inhibition

after 48 hrs [19]. Our results from Live-Dead assay and MTT

assay showed more than 99.8% neuro 2a and 90% SH-SY5Y

neuroblastoma cell deaths upon MPTQ treatment (Figure 2 and 3

respectively). The suggestive mode of antiproliferative action was

attributed to its DNA intercalating property [18,19]. Our results

also suggested that, anticancer effect of MPTQ on neuroblastoma

cells continued over a long period of time. A similar result was also

observed in MPTQ treated various leukemic cells [20]. We have

not tested the unwanted toxic side effects of MPTQ. However,

ellipticine, a structural analogue of MPTQ has limited toxic side

effects and absolute no haematological toxicity [15]. Our previous

Figure 11. MPTQ engages caspase independent intrinsic apoptosis pathway through AIF nuclear translocation. A) Western blotting
was performed on three untreated and three MPTQ (30 mM) treated neuro 2a cell lysates using an antibody specific for AIF showing no change in AIF
expression between treatments. B) Immunocytochemistry of AIF was used to monitor AIF cellular localization. Detection was done using Alexa 594
labelled secondary antibody. Nuclei were stained with DAPI. Analysis of images indicates percentage of cells positive for nuclear AIF is significantly
more in MPTQ treated cells than control cell (C) and the level of nuclear AIF level is also significantly more in MPTQ treated cells than control neuro 2a
cells (D). E) Western blot analysis of AIF, GAPDH and histone H3 on 3 independent sets of cytoplasmic and nuclear fraction of neuro 2a cells. F)
Densitometric analysis indicated approximately 8-fold increased AIF level in nuclear compartments of MPTQ treated cells than untreated cells after
normalization with GAPDH and histone H3. Statistical analysis was made by Student’s t-test and p values are displayed. p value #0.05 is considered
significant.
doi:10.1371/journal.pone.0066430.g011
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study on MPTQ treated mice had no side effects from the drug

during the course of treatment and specifically reduced the tumour

load from a breast cancer cells xenografts [21], suggesting a better

bioavailability of MPTQ to tumour mass in vivo. A similar result

was also observed in subcutaneous graft of B16 melanoma cells

[19]. Taken together, MPTQ exhibits strong anticancer property

which can be harnessed positively for treating neuroblastoma

patients.

Mechanisms associated with MPTQ-mediated neuroblastoma

cell toxicity are not known. DNA intercalating agents are known to

induce nuclear DNA breaks by altering cleavage/religation

equilibrium of topoisomerase II [59]. DNA fragmentation

represents severe form of cell damage and fragmentation of

nuclear DNA into nucleosome-size is a key feature of apoptosis

[60,61]. Here we found that, MPTQ treatment induces DNA

double strand breaks of nucleosome-sized fragments in a dose-

dependent manner. Nuclear DNA fragmentation was also

reported in MPTQ-treated leukemic cells [20]. Thus, our results

for the first time indicated that MPTQ-mediated neuroblastoma

cell death might be activating and employing cellular apoptotic

machineries. Never the less, internucleosomal DNA fragments are

also seen in some early necrotic cells [62]. Apoptotic cells contain

blunt end, 39and 59 overhang DNA breaks where as necrotic cells

have only 59 overhang DNA breaks [32]. Terminal deoxynucleo-

tidyl transferase (TdT) catalyzes the incorporation of deoxynucle-

otides to the free 39-hydroxyl terminus of DNA. For DNA double

stranded breaks, TdT-mediated DNA extensions are most efficient

when they have 3-overhangs [33]. Since apoptotic cells have only

39 overhangs but not in necrotic cells we validated MPTQ-

mediated DNA fragmentation using TUNEL (terminal deoxynu-

cleotidyl transferase-mediated dUTP nick end-labelling) assay.

Our results clearly show significant increased TUNEL positive

cells in MPTQ treated neuro 2a cells than corresponding control

cells (Figure 4). At present, there is no report showing TUNEL

positive cells in MPTQ-mediated cytotoxicity in any cancer cells.

However, TUNEL positive cells were considered apoptotic in

ellipticine treated A549 lung carcinoma cells [63]. Thus, increased

nucleosomal-size nuclear DNA fragmentation and increased

TUNEL positive cells in MPTQ treated neuro 2a cells strongly

suggests the possible involvement of apoptosis.

Pathways related to apoptosis have never been studied in

MPTQ-mediated cell death in neuroblastoma. DNA intercalating

agents like ellipticine are potent genotoxic agents and induces

nuclear DNA fragmentation. DNA double strand breaks are one

such kind and are potent activator of ataxia-telangiectasia mutated

(ATM) protein [34,36]. DNA DSBs regulates the changes in ATM

protein that eventually activates its kinase domain to phosphor-

ylate Ser1981 in human and Ser1983 in mouse by intermolecular

autophosphorylation [39]. Since MPTQ is a structural analogue of

ellipticine and DNA damage was seen in MPTQ treated

neuroblastoma cells, activation of ATM was hypothesized. In

our current study, we found significant increased nuclear phosho-

ATM (Ser1983) protein by immunocytochemistry as well as in the

nuclear fraction by western blot analysis in MPTQ treated cells

than untreated cells indicating its participation to genotoxic lesions

induced by MPTQ. So far there is no report stating the activation

of ATM in any MPTQ treated cancer cells. Thus, activation of

ATM strongly support our finding on the induction of DNA

double strand breaks in MPTQ treated neuroblastoma cells and

might play a key role in the activation of apoptotic cascade by

activating downstream target proteins.

The p53 tumour suppressor protein plays a vital role in

regulating cells with damaged DNA [64]. Upon DNA damage,

p53 is phosphorylated at several sites in its transactivation domain,

including at Ser15 and Ser20 [65]. Activated ATM phosphorylate

p53 at Ser15 directly and indirectly at Ser20 [41,42,43,44]. Here,

we found increased phosphorylation of p53 at Ser15 in MPTQ

treated than untreated neuroblastoma cells without any detectable

changes in total p53 level. We also found increased phosphory-

lation of p53 at Ser20 in MPTQ treated than untreated

neuroblastoma cells by immunocytochemistry (data not shown).

Activated p53 at ser15 was found to be confined only in nuclear

compartments of MPTQ treated neuro 2a cells indicating its

function only restricted to nucleus. Recently, Sharma et al., have

shown that MPTQ upregulates p53 in a leukemic cell line [21].

However, posttranslational modifications of p53 were not shown

in their study as we have also not examined other posttranslational

modifications of p53. Kuo et al., have shown that p53 protein level

was increased in ellipticine treated HepG2 cells and MCF-7 breast

cancer cells [66,67]. Furthermore, ellipticine had been shown to

stabilize mutated p53 and restored the lost function of mutated

p53 [68]. Thus, activation of p53 validates the function of

activated ATM in MPTQ treated neuro 2a cells and further

suggests the genotoxic effect of MPTQ on neuro 2a neuroblas-

toma cells. Like ATM, activation of p53 activates several

downstream targets those are associated with mitochondrial

dysfunction and initiate intrinsic apoptosis pathway. Bax (Bcl2-

associated6protein) is an immediate early p53-responsive gene

[69]. In response to apoptotic stimuli, Bax undergoes conforma-

tional changes, oligomerizes and inserts into the mitochondrial

outer membrane (MOM) [70]. Oligomerization of Bax leads to the

permeabilization of MOM and the release of cytochrome c, which

in turn activates intrinsic apoptotic pathway [71]. Based on this,

we studied Bax expression in MPTQ treated neuroblastoma cells

to understand the function of p53 activation and possible

involvement of mitochondrial apoptosis pathway in our study.

MPTQ treated neuroblastoma cells demonstrated significant

increased Bax expression than untreated cells. In addition,

cytoplasmic Bax was found to be shifted from diffused distribution

in control cells to punctuated cytoplasmic localization in MPTQ

treated cells indicating possible oligomerization of Bax protein. A

similar Bax distribution was also reported in staurosporine treated

Cos-7 cells [72]. Overexpression of Bax can accelerate cell death

in response to various apoptosis stimuli [47]. In addition,

structurally related ellipticine increased the expression of Bax in

MDA-MB-231 human breast cancer cells [73]. Collectively,

MPTQ-mediated overexpression and punctuated cytoplasmic

distribution of Bax in neuro 2a neuroblastoma cells suggest the

activation of p53-dependent mitochondrial apoptosis pathway.

Two important components of mitochondrial apoptosis path-

way include caspase-dependent and independent pathways [74].

In this report, we observed consistent activation of caspase-9 in the

form of a ,35 kDa protein (cleaved caspase-9) but not caspase-2

in MPTQ treated neuroblastoma cells. Both caspase-9 and

caspase-2 are well established initiator caspases for intrinsic

apoptotic pathway [75] suggesting for the first time that, MPTQ

treated neuroblastoma cell death is mediated through only

caspase-9 driven intrinsic apoptotic pathway. Activation of

caspases is a hallmark feature of apoptosis. We also observed

cleaved caspase-3 and caspase-7 products (activated) in MPTQ

treated neuroblastoma cells. Both caspase-3 and caspase-7 are

target of caspase-9 and are executor caspases of cellular intrinsic

apoptotic pathway [76,77]. In some instances, activation of p53

activates extrinsic apoptosis pathway by proteolytic activation of

caspase-8 and -10 [21]. Since caspase-10 gene is absent in mice

[75] we explored the proteolytic activation of caspase-8 in our

study. Proteolytic products of caspase-8 were not observed in

MPTQ treated neuro 2a cells. Thus, MPTQ-mediated neuroblas-
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toma cell death involves only intrinsic but not extrinsic apoptotic

pathway. Recently Sharma et al., have shown that MPTQ

induced both intrinsic and extrinsic apoptotic pathway in K562

myeloid leukemia cell line suggesting different cell types may

employ alternative apoptotic pathways in response to MPTQ

treatment. Activated caspase-3 was reported to be present in

nucleus and target nuclear protein such as PARP [78]. Our result

showed significant increased presence of caspase-3 in the nucleus

of MPTQ treated neuroblastoma cells than untreated cells. In

addition, extensive cleaved PARP was also seen only in MPTQ

treated neuroblastoma cell lysates by western blot analysis and

only in the nucleus of MPTQ treated neuroblastoma cells by

immunocytochemical analysis (see Figure 9). Unlike our finding,

PARP proteolysis was not seen in MPTQ treated K562 myeloid

leukemia cell line in spite of the activation of caspase-3 [21]. This

could be because of difference in cell lines used or weaker

activation of caspase-3 in MPTQ treated K562 myeloid leukemia

cells. Furthermore, proteolysis of PARP by cysteine proteases such

as caspases differentiated apoptosis from necrosis in MDCK cells.

PARP remain intact during necrosis [62]. Thus, proteolysis of

PARP along with proteolytic activation of caspases strongly

suggests the involvement of apoptosis in MPTQ-mediated cell

death in neuroblastoma cells.

Another factor which gets affected to mitochondrial outer

membrane permeabilization is apoptosis inducing factor (AIF).

Translocation of AIF from mitochondria to cytoplasm and nucleus

provokes chromatinolysis and caspase-independent apoptosis [58].

In our study we found only a 67 kDa band with no alteration in

amount in both untreated and MPTQ treated neuroblastoma cells

indicating MPTQ has no effect on the induction of AIF

expression. However, the results from immunocytochemistry and

western blot analysis of cytoplasmic and nuclear fraction

demonstrated significant increased AIF signal in the nucleus of

MPTQ treated neuroblastoma cells. It has been reported that, AIF

undergo proteolysis to form a 57 kDa truncated AIF prior to

nuclear translocation [79,80]. However we did not see 57 kDa

AIF products in any isolate of our study. It is not clear whether

AIF proteolysis is critical for the translocation of AIF into nucleus

and its nuclear chromatinolysis activity [58,81,82]. In parallel to

our results, only a 67 kDa AIF was observed in both cytoplasmic

and nuclear extract of curcumin-induced apoptosis in human

foreskin-derived fibroblasts. Inhibitors for pan-specific caspases

and calpain failed to restrict AIF nuclear translocation in their

study suggesting such molecular events are not always necessary

for AIF function in response to apoptosis [81]. Moreover, Bax-

mediated VDAC activation and induction of ceramide synthesis

were involved in the release of AIF from mitochondria [81]. Since

Bax is overexpressed in our study, we anticipate AIF nuclear

translocation might be independent of its proteolytic activation

and depend on soluble AIF present in the mitochondrial

intermembrane space.

In conclusion, the results presented in this paper demonstrated

novel mechanisms associated with cytotoxic property of MPTQ on

neuroblastoma cells. The mode of MPTQ-mediated cell death has

been illustrated as a schema in figure 12. However, salient features

of our study which report for the first time are 1) MPTQ induces

neuroblastoma cell deaths not only in mouse neuro 2a cells but

also in human SH-SY5Y cells. 2) MPTQ-mediated neuroblastoma

cell death activates apoptotic pathway through ATM-p53-Bax-

dependent mitochondrial apoptosis pathway. 3) MPTQ activates

intrinsic apoptotic pathway but not extrinsic apoptosis pathway. 4)

MPTQ also engaged caspase independent intrinsic apoptotic

pathway by AIF nuclear translocation (Figure 12). Such multi-

modal induction of apoptosis pathways by MPTQ strongly

suggests its potential use as a new anticancer drug for the

management of neuroblastoma.
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Figure 12. Working model of MPTQ-mediated apoptosis in
neuro 2a neuroblastoma cells. MPTQ activates ATM (an indicator of
DNA double strand breaks) and p53. MPTQ treatment also upregulates
Bax protein level which activates caspase-dependent intrinsic apoptosis
pathway by activating caspase-9 followed by caspase-3 and -7 which in
turn inactivates PARP. Caspase-independent intrinsic apoptosis path-
way was also activated by nuclear translocation of AIF. MOMP=mi-
tochondrial outer membrane permeabilization.
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